Phenology/Degree-Day Model Analysis – May 2023

by Len Coop, Oregon IPM Center, Oregon State University for IPM decision support

Boxwood leafminer

Hosts: boxwood (Buxus spp.)

Monarthropalpus flavus syn. Monarthropalpus buxi Native to: Europe

Goal: Develop a phenology model using available literature and weather data analysis

Extension links:

https://www.newgenboxwood.com/boxwood-leafminer-1

https://pnwhandbooks.org/insect/hort/landscape/hosts-pests-landscape-plants/boxwood-buxus-boxwood-leafminer

Model summary for Boxwood Leafminer:

		Celsius	Fahrenheit
Model abbrev.:	bxlm		
Start Date:	Jan. 1 st		
Calc. Method:	single sine (SS)		
lower threshold:		6.7	44
upper threshold:		35.0	95
Event:	DDC6.7		DDF44
1st pupation in spring		127	229
1 st Adults		430	775
Peak Adults		507	912
1 st egg hatch		682	1228
Peak egg hatch		988	1778
Peak 2nd, first 3 rd instar larvae		1894	3410
Peak third instar larvae		2511	4521

(nominal; there is evidence that they do not tolerate high temps)

General notes on methodology: The original model source (1&2) do not include dates of events, forcing us to reverse engineer dates. This allowed converting the start date and lower threshold to more plausible and robust values. The use of Mar. 1st and a 50F lower threshold and use of the simple average calculation methods may have provided a good fit of their data, but are unlikely to allow usage of the model in regions to the south of the study region (Maryland). One reason is that this species is noted to NOT have an overwintering diapause, and can develop prior to March 1. And, for this species, the simple average calculation methods will often not pick up spring time highs that exceed the lower threshold, since they are averaged out. The single sine and other more complex calculation methods, will accumulate these springtime heat units that the species is responding to. The final selection

of a lower threshold of 44F is based on a review of other gall forming midges (see appendix). Of course, more research on rates of development vs. temperature are needed to confirm a more precise threshold for this species. We found one other data source (3) to partially validate the original and revised models, also from Maryland from 1913 to 1924. This older data set does not reveal which model performs best, as both seem about equal overall. Again, data such as first adult emergence from other regions, especially south of this latitude, would greatly help in validating or improving the model.

The upper threshold was selected based on notes on other pod gall midges that extreme summer heat can limit survival, and because the pine needle and blueberry pod gall midges cannot develop through all stages at or above 86 F (30 C). This estimate for an upper threshold of 95 F also requires further research.

Source 1: d'Eustachio, G.J. 1999. Integrated management of the boxwood leafminer. M.S. Thesis. U. MD.

Source 2: d'Eustachio, G.J. and M.J. Raupp. 2001. Application of systemic insecticides in relation to boxwood leafminer's life history. J. of Arboriculture 27:255-262.

- late Aug/Sept molt to 3rd instar; continue to develop slowly without diapause throughout winter months

- March molt to 4th instar (when most economic damage occurs); form pupal cells and pupate in mid- April

- Adults emerge, mate, and oviposit in 1 to a few days, very short lived. Adults not observed to feed

- used Mar 1 starting date and simple GDD formula; Tlow=50F

- raw data not included so it would be hard to do an exact reproduction of this model (so goal is to replicate using Jan 1 and Single Sine DDs if possible) - I used PRISM Data Explorer weather from Longwood Gardens, PA and US Nat. Arboretum in Wash., DC for 1994 and 1995. The approach was to reconstruct the dates of key events. For example at Longwood Gardens, peak adult emergence using simple average DDs with a March 1 start date and 50F lower threshold, from table 1, 440 DDF50Mar1, would have occurred on April 20. Then, using these predicted dates, develop a model that is presumed to be more robust by 1) Using Jan 1 as the start date, which seems appropriate as this insect does not appear to diapause and so should respond to temperatures above the threshold earlier than March 1; 2) Using the Single Sine calculation method, because this method is standard at uspest.org due to the improved ability to record heat on days when the Tmax exceeds the Tlow, but the Tmean might not (a common occurrence in the Spring). So, through this "reverse engineering" appraoch, we can build a model that may be more robust than the original model. It would have been desirable to have the original data that d'Eustachia and Raupp used, but it is not available in the thesis or the peer reviewed publication.

D. . .

Table 1. Table of boxwood leafminer stadia correlated with Growing Degree Days (average measurements for the years 1994-1995). The peak emergence is shown with the standard error.

GDD TABLE

Stadia 	1st Appcarance (GDD)	Peak emergence GDD (SE)	Number of GDD in stadia	Approximate Dates
Pupa	0	80 (27)	80	early March- mid April
Adult	46	310 (66)	230	mid April – May
E_{gg}	352	440 (127)	N/A	May
1 st	352	748 (104)	308	mid-late May
2nd	679	1106 (258)	358	early June
3rd	1236	2459 (270)	1353	late June – July
	2443	3287 (161)	828*	August – March

* The boxwood leafminer overwinters in the third instar. This number reflects the number of GDDs spent in the late summer.

Filenames in uspest.org: 1st Adult = 352 DD (Simple Avg from Mar.1)

Station and year		DOY	Date		ADDs50F	SSDDs45	SSDDs44FJ	SSDDs46F
LNGWDGPA94.txt		144	ļ	05/25/94	369	701	756	64
LNGWDGPA95.txt		148	6	05/29/95	358	781	847	71
NATARBMD94.txt		120)	05/01/94	361	633	680	58
NATARBMD95.txt		129)	05/10/95	353	751	816	68
	mean	135.3	;		360.3	716.5	774.8	660.7
	SD	13.0)		6.7	64.7	73.6	56.7
	CV	9.65	,		1.9	9.0	9.5	8.5

	1st Adult (cont.)						
Station and year		DOY	Date		SSDDs50SS	DDs42FJan1	
LNGWDGPA94.txt		144		05/25/94	462	848	
LNGWDGPA95.txt		148		05/29/95	497	988	
NATARBMD94.txt		120		05/01/94	431	782	
NATARBMD95.txt		129		05/10/95	481	958	
	mean	135.3			467.8	894.0	
	SD	13.0			28.4	95.9	
	CV	9.6			6.1	10.7	

01/01/94

01/01/95 01/01/94

first eg	first egg Hatch = 679 DD (Simple Avg from Mar. 1)							
DOY I	Date	ADDs50FSSDDs45	SSDDs44FJan1					
164	06/14/94	680	1203					
166	06/16/95	680	1287					
1 4 7	05/20/04	<u> </u>	1101					

01/01/95	147	05/28/94	680		1161	
	148	05/29/95	680		1261	
mean	156.3		680.0	#DIV/0!	1228.0	
SD	10.1		0.0	#DIV/0!	56.8	
CV	6.5		0.0	#DIV/0!	4.6	

	peak egg Hatch = 1106 DD (Simple Avg from Mar. 1)								
	DOY Date	9	SSDDs50S	SDDs48	SSDDs44FJ	an1			
	180	06/30/94	1232	1389	1736				
	186	07/06/95	1259	1440	1837				
	166	06/16/94	1207	1367	1723				
	168	06/18/95	1248	1422	1817				
mean	175		1236.5	1404.5	1778.3				
SD	9.6		22.6	32.7	57.1				
CV	5.5		1.8	2.3	3.2				

peak Adult = 440 DD (Simple Avg from Mar. 1)

16FJa: DOY		Date	ADDs50FN	SSDDs45F	SSDDs44	Jan1
647	151	06/01/94	459	828	890	
719	153	06/03/95	449	898	968	
588	131	05/12/94	453	780	838	
689	136	05/17/95	447	880	953	
60.75	142.8		452	846.5	912.3	
56.78	10.9		5.29	53.4	59.9	
8.59	7.6		1.17	6.3	6.6	

peak Adult (cont.)

DOY		Date	SSDDs50F	SSDDs48FJan1
	151	06/01/94	559	658
	153	06/03/95	588	704
	131	05/12/94	528	621
	136	05/17/95	576	686
	142.8		562.8	667.3
	10.9		26.0	36.2
	7.6		4.6	5.4

peak 2nd instar = 2459 DD

DOY		Date	ADDs50FN	SSDDs45F	SSDDs44	-Jan1
	233	08/22/94	2462	3240	3385	
	238	08/27/95	2474	3348	3503	
	210	07/30/94	2461	3183	3320	
	214	08/03/95	2459	3282	3432	
	223.8		2464.0	3263.3	3410.0	
	13.8		6.8	69.6	77.2	
	6.2		0.3	2.1	2.3	

peak 2nd instar = 2459 DD & first 3rd instar = 2443

DOY		Date	SSDDs50F	SSDDs48FJan1
	233	08/22/94	2563	2825
	238	08/27/95	2613	2898
	210	07/30/94	2540	2788
	214	08/03/95	2587	2853
	223.8		2575.8	2841.0
	13.8		31.4	46.4
	6.2		1.2	1.6

		peak e	egg Hato	cont.)			
Station and year		DOY	Date	A	ADDs50FS	SDDs45FJ	an1
LNGWDGPA94.txt		180		06/30/94	1131	1645	
LNGWDGPA95.txt		186		07/06/95	1119	1733	
NATARBMD94.txt		166		06/16/94	1128	1736	
NATARBMD95.txt		168		06/18/95	1119	1712	
	mean	175.0			1124.3	1706.5	
	SD	9.6			6.2	42.4	
	CV	5.5			0.6	2.5	

		first pupation = 46 DD (Simple Avg from Mar. 1)					
Station and year		DOY	Date	SSDDs5	SSDDs44	FJan1	
LNGWDGPA94.txt		104	04/1	5/94 47	184		
LNGWDGPA95.txt		109	04/2	20/95 51.1	305		
NATARBMD94.txt		92	04/0)3/94 46.1	198		
NATARBMD95.txt		78	03/2	20/95 47.6	228		
	mean	95.8			228.8		
	SD	13.8			54.0		
	CV	14.4			23.6		

peak	3rd in	star = 3287	DD		
DOY		Date	ADDs50FNSSDDs45F	SSDDs44	FJan1
	305	11/02/94	3183	4547	
	307	11/04/95	3287	4735	
	244	09/02/94	3291	4354	
	243	09/01/95	3298	4446	
	274.8		3264.8	4520.5	
	36.1		54.7	163.3	
	13.1		1.7	3.6	

peak pupation = 310 DD (Simple Avg from Mar. 1)

DOY	Date	SSDDs50F	SSDDs44F	Jan1
142	l 05/22/94		680	
145	5 05/26/95		795	
118	3 04/29/94		631	
125	5 05/06/95		758	
132.3	3		716.0	
12.8	3		74.2	
9.7	7		10.4	

Source 3: The boxwood leafminer. Clyde C. Hamilton. 1925. U. Maryland AES Bulletin No. 272

Summarizing the life history we find that the adults usually emerge about the second week in May and lay their eggs at once. The egg stage lasts on an average of about three weeks. The third larval instar is attained by fall in which instar the winter is passed. The larvae molt into the fourth instar in March and pupate in April. The dates for the beginning of emergence of the boxwood leaf miner in the vicinity of Baltimore, Maryland, during the years it has been observed are as follows: 1913, May 15; 1916, May 10; 1920, May 21; 1921, April 22; 1922, May 8; 1923, May 15, and 1924, May 16.

Methods for calculating approximate Dds for 1913-1924: We found historical monthly average temps for Baltimore from weather.gov:

https://www.weather.gov/media/lwx/climate/bwitemps.pdf

Using this data, we compared each year in the older data with a more modern year (1981-2020) that we might use

as a proxy or close surrogate. First we found closest year(s) based on Jan-Mar and Apr-Jun averages, then used

r-sq values to help narrow down which year(s) to select as closest correlate. Next, we used PRISM data explorer to obtain the surrogate

year data to use for the validation analysis. The reason for all this is that PRISM data is not available prior to 1981.

Baltimore	MD	temperatures:
-----------	----	---------------

Data yrs	Jan	Feb	Mar	Ар	r Mag	y Jun	Jan	-Mar Avg Ap	r-Jun Avç To	tals	Similar yea	r or years (monthly match if needed)
	1913	43.5 36	.2	48.8	55.6	64.9	73.7	42.8	64.7	107.6	1995	
	1916	39.5 33	.6	37	52.6	66.6	69.4	36.7	62.9	99.6	(use combi	nation of years from 1984, 1986, 1995, and 2000)

	1920	28.6	32.8	44.8	52.8	60.8	72.6	35.4	62.1	97.5	1996							
	1920	37	39	54.6	58.6	63.1	75	43.5	65.6			ation of years	s from 199	3, 1994, 2	2003. and	2012)		
	1922	32.2	38.4	44.8	55.8	67.2	75.1	38.5	66.0	104.5	2000			-,, _	,	,		
	1923	36.6	32.4	44.5	53.6	63.8	76.7	37.8	64.7	102.5	1986							
	1923 1924	34.8	34.6	44.5	52.2	60.2	70.7	37.5	61.2	98.7		-square val						
Avail. Years	1924	54.0	54.0		52.2	00.2	11.2	57.5	01.2	50.7	1002	1913	1916	1920	1921	1922	1923	1924
	1981	27.9	38.8	41.9	57	62.2	74.3	41.4	64.5	105.9		0.852	0.831	0.956	0.912	0.967		0.940
	1982	25.5	35.8	42.9	50.7	66.1	69.4	38.7	62.1	100.8	1920	0.862	0.847	0.952	0.907	0.974		0.925
	1983	34.6	34.7	45.4	51.8	61.5	72.1	41.6	61.8	103.4		0.965	0.891	0.981	0.959	0.968		0.987
	1984	28.5	41.7	38.2	51.5	61.3	73.4	40.0	62.1	102.0	1920	0.811	0.832	0.910	0.838	0.947	0.873	0.912
	1985	29.3	38.7	46	57.9	65.1	70.4	43.0	64.5	107.4	1923	0.851	0.822	0.958	0.926	0.965	0.888	0.923
	1986	33.2	32.9	45	53.5	66.7	74.4	41.2	64.9	106.0	1923	0.965	0.917	0.974	0.944	0.974	0.977	0.981
	1987	32.5	34.3	46.2	53.1	65	74.5	41.5	64.2	105.7	1923	0.954	0.887	0.984	0.960	0.977	0.973	0.981
	1988	28.7	35.9	45.1	52	64	73	40.4	63.0	103.4	1916	0.907	0.853	0.983	0.952	0.983	0.942	0.963
	1989	37.9	36.5	43.8	52.5	62	73.9	42.7	62.8	105.5	_	0.968	0.923	0.956	0.917	0.956	0.987	0.987
	1990	42	42.3	47.6	54.8	62.3	73.3	46.7	63.5	110.1	1913	0.954	0.906	0.959	0.919	0.959	0.981	
	1991	35.5	40.7	46.7	55.9	70.6	74.6	44.7	67.0	111.7	1913	0.913	0.913	0.957	0.903	0.985	0.938	
	1992	34.6	37.1	41.3	52	60.8	70.1	41.3	61.0	102.2	1924	0.938	0.925	0.964	0.912	0.980	0.969	
	1993	37.9	31.4	39.4	52.5	65	72.2	40.3	63.2	103.5	1916	0.972	0.975	0.909	0.857	0.928	0.969	
	1994	27.1	34	43	59.6	60.6	77.2	40.9	65.8	106.7	4000	0.879	0.815	0.964	0.945	0.946		
	1995	39	33.2	47.8	55.2	64.5	74.5	43.8	64.7	108.5	1922	0.987	0.903	0.953	0.942	0.932		
	1996	31.7	35.7	39.9	54 51 6	60.6	73.3	40.3	62.6	103.0	1920	0.921	0.900	0.963	0.916	0.973	0.958	
	1997 1008	32.8	41 41 7	45.5	51.6	59.5	70.1	42.7	60.4	103.1	1012	0.873	0.819	0.970	0.934	0.970		0.951
	1998 1999	40.9 35.1	41.7 37.6	45.9 41.8	55.2 53.2	66.5 64.2	71.7 71.5	45.9 41.9	64.5 63.0	110.4 104.9	1913	0.945 0.937	<mark>0.956</mark> 0.941	0.945 0.957	0.886 0.899	0.975 0.982	0.964 0.963	0.973
	2000	32.5	38.1	41.8	53.2 52.9	64.2	71.5	41.9	63.5	104.9		0.937	0.941	0.937	0.899	0.982	0.903	
	2000	33.1	38.5	40.5	55.4	63.4	72.0	42.2	64.3	106.5		0.911	0.903	0.963	0.910	0.981	0.950	
	2001	39.1	39.3	45	56.7	62.2	73.8	45.0	64.2	109.3		0.949	0.913	0.961	0.922	0.962	0.976	
	2003	28.3	30.2	43.9	52.7	59.3	69.8	38.8	60.6	99.4		0.936	0.847	0.985	0.979	0.961	0.956	
	2004	27.6	34.8	45.6	54.7	69.8	70.9	40.7	65.1	105.8		0.880	0.859	0.951	0.915	0.967	0.901	
	2005	34.1	36.7	40.6	55.2	59.2	73.6	41.7	62.7	104.3		0.917	0.889	0.951	0.908	0.954	0.954	
	2006	41.6	36.1	45.6	57.5	63.4	73.1	45.2	64.7	109.9		0.977	0.933	0.935	0.907	0.929	0.979	0.971
	2007	38.7	29.1	45.2	51.5	65.5	73.8	41.1	63.6	104.7		0.989	0.921	0.916	0.897	0.904	0.974	0.951
	2008	35.4	37.1	45	55.8	60.5	75.3	43.3	63.9	107.2		0.938	0.869	0.973	0.948	0.957	0.969	0.981
	2009	29.3	37.5	43.1	54.9	63.7	71.4	41.2	63.3	104.5		0.886	0.865	0.972	0.929	0.985	0.925	0.955
	2010	32.7	30.9	48.5	57.2	67.4	78.9	42.3	67.8	110.2		0.964	0.874	0.978	0.971	0.954	0.973	0.974
	2011	30.3	38.5	44.4	57.7	67.2	75.7	42.7	66.9	109.6		0.893	0.875	0.972	0.927	0.986	0.931	
	2012	38.3		53.7	55.3	69	73.6	47.2	66.0	113.2		0.916	0.840		0.947	0.957		
	2013	36.9	35	40.7	55.4	63.7	73.9	42.0	64.3	106.3		0.957	0.952	0.941	0.890	0.956	0.974	
	2014	27.4	32.9	38.5	53	64.9	73.2	38.0	63.7	101.7		0.919	0.917	0.966	0.913	0.988	0.950	
	2015	30.8	25.3	39.7	54.6	69.1	74.1	37.6	65.9	103.5		0.967	0.948	0.937	0.902	0.947	0.963	
	2016	31.9		50	54	61.5	73	43.3	62.8	106.2		0.899	0.788	0.983	0.982	0.951	0.931	
	2017		44.2	43.9	60.3	62.3	73.7	46.9	65.4	112.3		0.860	0.871	0.919	0.861	0.940	0.906	
	2018		41.8 27.9	40.2	52.1	69.6	72.6	41.5	64.8	106.3		0.839	0.900	0.898	0.814	0.957	0.879	
	2019	33.5	31.8	43	59.5	68.3	75.3	43.5	67.7	111.2		0.912	0.919	0.956	0.904	0.979	0.940	0.963

	2020	40.2	42 50	.9 53	62.1	75.1	46.5	63.4	109.9		0.930	0.828	0.961	0.944	0.938
uspest.org we	eather data														
file name	Emerg		Date of 352 Dd	6		Date of 467 Dds			Date of 774 D	ds		Date of 894	Dds		
	Date		SADDs50Mar1	days diff	abs(days	c SSDDs50Jar days dif	f	abs(daysdiff	SSDDs44J;da	ays diff a	abs(daysdit	SSDDs42.d	ays diff a	abs(daysdiff)	i
BALT13	0	5/15/13	05/15/2	.3 0) 0	05/14/13	-1	1	05/12/13	-3	3	05/12/13	-3	3	
BALTC16	C	5/10/16	05/17/2	.6 7	' 7	05/18/16	8	8	05/17/16	7	7	05/16/16	6	6	
BALT20	0	5/21/20	05/12/2	20 -9) 9	05/17/20	-4	4	05/17/20	-4	4	05/16/20	-5	5	
BALTE21	0	4/22/21	04/26/2	21 4	4 4	04/27/21	5	5	04/26/21	4	4	04/26/21	4	4	
BALT22	0	5/08/22	05/13/2	2 5	5 5	05/15/22	7	7	05/16/22	8	8	05/16/22	8	8	
BALT23	0	5/15/23	05/08/2	23 -7	, 7	05/11/23	-4	4	05/12/23	-3	3	05/12/23	-3	3	
BALT24	0	5/16/24	05/19/2	24 3	3 3	05/22/24	6	6	05/19/24	3	3	05/19/24	3	3	
	average	e/MAE		0.43	5.00		2.43	5.00		1.71	4.57		1.43	4.57	

0.960 0.963

Notes: SSDDs45FJan1 means: Single sine DDs base 45 F and Jan 1st as start date

SSDDs50Jan1 means: Base 50F Dds using Single Sine calculations and Jan 1 as start date, etc.

Results: All methods tested seem acceptable, DDs44 Single Sine Jan 1 appears to work well, and best matches Tlow for other gall midges mentioned below The average days difference for these settings were 1.7 days, mean absolute error was 4.6 days.

Source 4: https://entnemdept.ufl.edu/creatures/ORN/SHRUBS/boxwood_leafminer.html

The adult emergence period typically occurs in the spring as temperatures warm and lasts only about two weeks once it begins (Barnes 1948). Adults emerge through circular windows on blisters, leaving behind a pupal case (exuvia), which remains protruding from the lower surface of the previously infested leaf (Figure 4) (Brewer et al 1984). Adult emergence is synchronized with sunlight level, resulting in more adults emerging during early morning hours (Brewer 1981). These midges have one generation per year and complete their entire juvenile development within the leaf before emerging as adults (Brewer et al. 1984).

Source 5. Brewer JW, Skuhravÿ V, Skuhravá M. 1984. Biology, distribution and control of Monarthropalpus buxi (Laboulbéne) (Diptera, Cecidomyiidae). Zeitschrift für Angewandte Entomologie 97: 167-175.

In Prague, Czechoslovakia, the emergence period of Monarthropalpus buxi begins in early May and lasts until about the first of June.

Notes: climate in Prague is similar to much of New England including Baltimore; these results are consistent with expectations

Appendix. Evidence of low threshold values for other gall midges:

From the four studies below, the average lower threshold was 5.9 C (42.7 F), ranging from 3.9 to 7.2 C (39 to 44.9 F)

Study	Tlow ©	TI	ow (F)
1. Douglas fir needle midge (jan 1 to adult		3.9	39.0
2. pine needle gall midge (larvae, pupae)		5.9	42.6
3. Blueberry gall midge (pupae)		6.8	44.2
4. Pod gall midge (eggs, larvae, pupae)		7.2	44.9
Average		5.9	42.7

1. Douglas fir needle midge: https://uspest.org/wea/model_DNM_v1.pdf

- Solved for Tlow of 39F (3.9C), using Jan 1 start date.

2.Temperature-dependent post-diapause development and prediction of spring emergence of the pine needle gall midge (Dipt., Cecidomyiidae) Y. Son, J.-H. Lee, Y.-J. Chung First published: 20 November 2007 https://doi.org/10.1111/j.1439-0418.2007.01214.x

From Abstract: "In a linear model, the lower threshold temperatures were **5.1**, **7.1** and **5.9**°C for larvae, pupae, and larvae to adults respectively" Note that pupae did not complete development at 30 C (86 F), which indicates that the upper developmental threshold may be between this value and, say 100 F.

Data from Table 1:

Temp (°C)	n*	Development stage (n†)	Development stage (n [†])							
		Larvae	Рирае	Larvae to adults						
12	216	142.6 ± 2.3 (74)	43.0 (1)	239.0 (1)						
15	212	114.5 ± 1.1 (136)	25.3 ± 1.0 (15)	140.9 ± 2.0 (15)						
18	220	83.9 ± 1.1 (159)	25.1 ± 1.0 (48)	102.8 ± 1.8 (48)						
21	225	67.3 ± 0.8 (176)	16.5 ± 0.3 (112)	81.8 ± 1.0 (112)						
24	257	53.0 ± 0.6 (219)	12.3 ± 0.3 (146)	63.8 ± 0.6 (146)						
27	226	50.3 ± 0.8 (165)	11.3 ± 0.3 (84)	59.9 ± 0.9 (84)						
30	290	47.9 ± 1.3 (42)	_ [‡] (0)	_ (0)						

*Initial number of insects.

[†]Number of individuals surviving to next stage.

[‡]No observation was made due to 100% pupal mortality.

3. Pupation and Emergence of Blueberry Gall Midge, Dasineura oxycoccana (Diptera: Cecidomyiidae), Under Varying Temperature Conditions Authors: Roubos, Craig R., and Liburd, Oscar E. 2010 Source: Florida Entomologist, 93(2) : 283-290

From table 3 – the lower threshold ranged from 4.7 to 8.9 depending on rearing method for the pupal stage. Overall average: 6.8 C (44.2 F) Note that pupae did not complete development for two methods at 30 C, suggesting that the upper threshold is somewhat close to, but higher than this value.

			Thermal Constant $(K)^{\circ}$						
Model	Method	Threshold (°C)	$15^{\circ}C$	$20^{\circ}\mathrm{C}$	$25^{\circ}\mathrm{C}$	$30^{\circ}C$			
Linear	5 -mL vial 4^{b}	6.1	195.8	164.0	165.9	217.5			
	5-mL vial 3°	8.9	134.2	131.0	133.6	192.0			
	Deli cup 4 ^b	4.7	207.0	171.4	174.6	177.1			
	Deli cup 3°	7.4	152.8	141.1	151.4	158.2			
Nonlinear	5-mL vial	6.9	178.2	154.6	150.2	210.2			

TABLE 3. ESTIMATES OF THE THERMAL CONSTANT FOR DASINEURA OXYCOCCANA PUPATION UNDER CONSTANT TEMPER-ATURES, WITH THERMAL CONSTANTS REPORTED IN DEGREE-DAYS.

^a Formula for calculating $K = D_T(T_i - c)$. ^b Four temperatures used (15-30°C). ^c Three temperatures used (15-25°C).

4. The developmental time of the pod gall midge, Dasyneura brassicae Winn. (Dipt., Cecidomyiidae)

J. Axelsen

First published: January/December 1992

https://doi.org/10.1111/j.1439-0418.1992.tb01125.x

Reported a Tlow of 6.7 C (44.1 F) for egg+larval development, 8.1 C (46.6 F) for pupal development in the soil