
Phenology/Degree-Day Model Analysis - Jan. 23, 2020

by Len Coop and Brittany S. Barker, Oregon IPM Center, Oregon State University, for APHIS PPQ

Tomato leafminer Tuta absoluta (Meyrick 1917) (Lepidoptera: Gelechiidae)

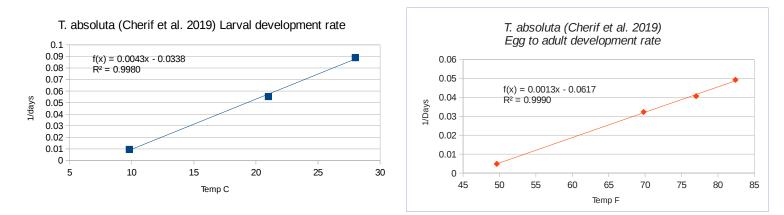
Hosts: Tomato, other Solanaceae (potato, eggplant)

Native to: South America Invaded areas include: Mediterranean regions, W. Europe, India, Africa

Sources:

1. Cherif, A., S. Attia-Barhoumi, R. Mansour, L. Zappala, K. Grissa-Lebdi. 2019. Elucidating key biological parameters of *Tuta absoluta* on different host plants and under various temperature and relative humidity regimes. Entomologia Generalis 39:1-7.

Methods: Re-analyze data from Figs. 1&2 to determine lower threshold and degree-day requirements with x-intercept method. Use a dummy data point to force x-intercept

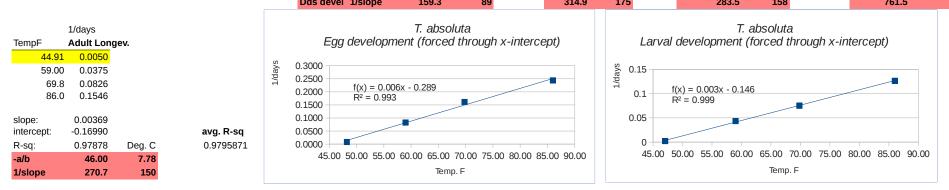

through proposed lower threshold of 7.78C/46F (data with yellow background).

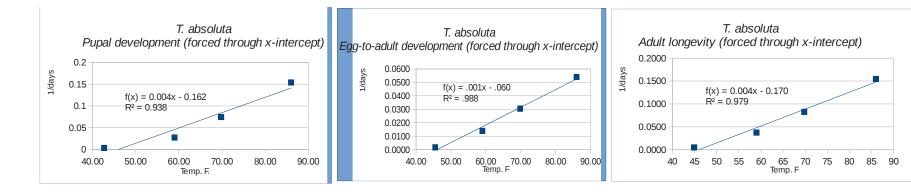
-Studies using Tunisian populations reared on tomato; not using data on development reared on potato and eggplant (which is slower)

From Tables 1 & 2 – Development rate vs. temperature on tomato at 3 temps for all stages except adult longevity (only 1 temp of 25C/77F)

-Notes: larval development at 25C (60% RH) is an apparent outlier; similarly only the 32% RH for 21 and 28C results are within range of all other studies; omit outlier point

			Egg		Larvae		Pupae			Egg to Adu	ılt	ļ	Adult Lon	igev	
Avg. RH	Temp C	Temp F	Days	1/days	Days	1/days	Days	1/days	Temp F	Days	1/days	[Days	DDs7.78C	DDs46F
	9.8	49.64	28.9	0.0346021	104.8	0.009542	5	<mark>9 0.016949</mark>	49.64	206	0.004854				
32.00%	21	69.8	3.39		18.08	0.0553097	9.4	9 0.105374	69.8	30.96	0.0323		11.33	19	5 351
60.00%	25	77	3.36	0.297619	15		6.2	2 0.160772	77	24.58	0.040683				
32.00%	28	82.4	2.88	0.3472222	11.24	0.088968	6.1	8 0.161812	82.4	20.3	0.049261		10.48	18	325
				Deg. F	Deg. C	Deg. F	Deg. C	F	Deg. C		Deg. F	Deg. C			
	slope			0.00957		0.00241		0.00469			0.00134	0.00241			
	intercept			-0.44005		-0.11088		-0.21583			-0.06168	-0.01878		avg. R-sq	
	R-sq			0.99996		0.99801		0.97453			0.99898	0.99898		0.992869647	L
	-a/b	(x-intercept	t)	46.0	7.78	46.0	7.7	8 46.0	7.78		46.0	7.78			
	-1/b	(DD reqs)		104.5	58	414.9	23	1 213.1	118		745.9	414.4		18	3 338

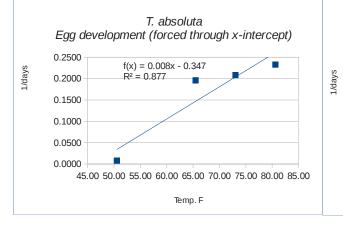

Results: At Tlow of 7.78C/46F, DD req.s for egg, larvae, pupae, egg to adult and adult longevity are: 55, 239, 118, 414, and 242 DDC, and 99, 431, 213, 746, and 435 DDF

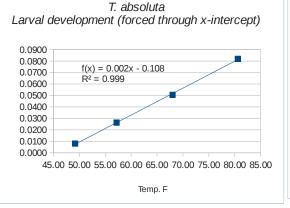

2. Mahdi, K, S. Doumandji. 2013. Research on temperature: limiting factor of development of tomato leaf miner *Tuta absoluta* (Meyrik). Int. J. Agric. Sci and Res. https://www.cabi.org/ISC/FullTextPDF/2014/20143099367.pdf

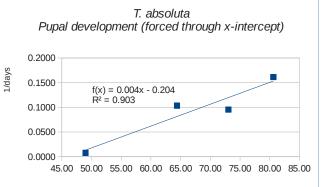
 Notes:
 -performed in Algeria; reared on tomato foliage; average RH was 70%
 -they solved for an overall Tlow of 9.8C

 Methods:
 Re-analyze data from Tables 2-3 to determine lower threshold and degree-day requirements with x-intercept method. Use a dummy data point to force x-intercept through proposed lower threshold of 10C/50F (data with yellow background).

			Days De	velopment				1/days			1/days			1/days			1/days	
Temp C	Egg	Larvae	Pupa	Total	Adult Long		Temp F	Egg	-	Temp F	Larvae	-	Temp F	Pupae		Temp F	EggtoAdult	
	1	L44 50	0 300) 58	0 164		48.22	2 0.0080		47.06	<mark>6 0.002</mark>		42.70	0.0033333333		45.50	0.0017	
15	5 1	2.1 23.	0 36.4	4 71.	5 26.7		59.00	0.0826		59.00	0.043478		59.00	0.0274725275		59.00	0.0140	
2	L	6.2 13.	3 13.4	4 32.	9 12.1		69.80	0.1613		69.80	0.075188		69.80	0.0746268657		69.80	0.0304	
30)	4.1 7.	9 6.5	5 18.	5 6.47		86.00	0.2439		86.00	0.126582		86.00	0.1538461538		86.00	0.0541	
							slope:	0.00628			0.00318			0.00353			0.00131	
							intercept:	-0.28877			-0.14609			-0.16222			-0.06042	
							R-sq:	0.99258	Deg. C		0.99915	Deg. C		0.93849	Deg. C		0.98812	Deg. C
						Tlow =	-a/b	46.01	7.78		46.00	7.78		46.00	7.78		46.01	7.78
						Dds devel	1/slope	159.3	89		314.9	175		283.5	158		761.5	423



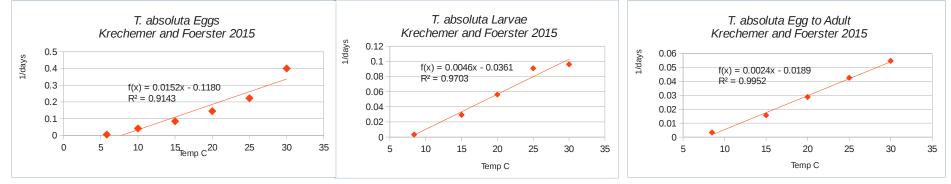



Results: At Tlow of 7.78C/46F, DD req.s for egg, larvae, pupae, egg to adult and adult longevity are: 89, 175, 158, 423 and 150 DDC, and 159, 315, 283, 762, and 271 DDF

-further analysis from citations cited in discussion section:

Refs:	Haji et al 1988 Coelho & Franca 1987	, Estay 2000	Haji et al 1988, Coelho & Franca 19	87								
		Days development				1/days		1/days		1/days		
Temp C	Egg	Larvae	Pupae		Temp F	Egg	Temp F	Larvae	Temp F	Pupae		
18.6	5.1				50.52	0.0080	49.20	0.0080	49.00	0.0080		
22.8	4.8				65.48	0.1961	57.20	0.0262	64.40	0.1031		
27	4.3				73.04	0.2083	68.00	0.0505	73.04	0.0952		
14	Ļ	38.1			80.60	0.2326	80.60	0.0820	80.60	0.1613		
20)	19.8										
27	,	12.2			slope:	0.00753	slope:	0.00235	slope:	0.00443		
18	}		9.7		intercept:	-0.34662	intercept:	-0.10807	intercept:	-0.20381	а	vg. R-sq
22.8	}		10.5		R-sq:	0.87741	Deg. C R-sq:	0.99932	Deg. C R-sq:	0.90321	Deg. C	0.9266
27	,		6.2	Tlow =	-a/b	46.01	7.78 -a/b	46.01	7.78 -a/b	46.01	7.78	
				Dds deve	l 1/slope	132.7	74 1/slope	425.7	236 1/slope	225.8	125	

Temp. F


3. Krechemer F.S. and L.A. Foerster. 2015. Tuta absoluta (Lepicoptera: Gelechiidae): Thermal requirements and effect of temperature on development, survival, reproduction and longevity. Eur. J. Entomol. 112:658-663.

- Reared on tomato (cult. Santa Clara) in Colombo, Southern Brazil 25 deg. South Lat.

- Methods: use x-intercept method to verify lower threshold and DD requirements for all stages studied.

- Results: solved a common Tlow of 8C, and Tupper of 37.3.

		Eggs				Larvae			Pupae				Egg to Ad	lult			
Temp C	Temp F	Days		1/days	Temp C	Days	1/days	Temp C	Days		1/days	Temp C	Days	1/days			
5.8	3		225	<mark>0.0044444</mark>	8.38	300	0.003333	8.93	1	250	0.004	8.48	300	0.0033333333			
10) 50)	24.4	0.0409836	10	56.4		10	1 :	36.8	0.027174	10) 115.4				
15	5 59	9	11.9	0.0840336	15	34.1	0.029326	15		18.4	0.054348	15	63.9	0.0156494523			
20) 68	3	6.9	0.1449275	20	17.8	0.05618	20	1	10.2	0.098039	20	34.8	0.0287356322			
25	5 77	7	4.5	0.2222222	25	11	0.090909	25	i	8.4	0.119048	25	23.5	0.0425531915			
30) 86	5	2.5	0.4	30	10.4	0.096154	30	1	5.4	0.185185	30) 18.3	0.0546448087			
	slope			0.0151662			0.00464				0.007836			0.0024326854			
	intercept			-0.117995			-0.036119				-0.06097			-0.018930889		average F	s.
	R-sq:			0.9143317			0.970307				0.97714			0.995177156		0.964238	9
Tlow	-a/b			7.780156	DDF46		7.784028	DDF46			7.780291	DDF46		7.781889243	DDF46		
DDReq	1/slope			65.9	118.7		215.5	387.9	l.		127.6	229.7	'	411.1	739.9		

Results: At Tlow of 7.78C/46F, DD req.s for egg, larvae, pupae, and egg to adult were: 66, 216, 128 and 411 DDC, and 119, 388, 230, and 740 DDF

	Pre-OV			Oviposition	1
Temp C	Days	1/days	Temp C	Days	1/days
8.23	200	0.005	9.02	300	0.003
10	9.5	0.1052632	10	14.5	
15	3.3	0.3030303	15	14.6	
20	2	0.5	20	15.4	0.0649
25	2.3		25	11.6	0.0862
30	1.9		30	9.5	0.1052

Results: At Tlow of 7.78C/46F, DD reg.s for Pre-OV and ovipostition were: 24 and 204 DDC, and 44 and 367 DDF

4. Barrientos, R., J. Apablaze, A. Norero, P. Estay. 1998. Threshold temperature and thermal constant for development of the South American tomato moth, *Tuta absoluta* (Lepidoptera: Gelechiidae). Ciencia e Inv. Agr. 25:133-137.

- Studies in Santiago, Chile (Pontificia University), ca 33.5 S. Latitude; reared on tomato

- Reported Tlow values of 6.9, 7.6, 9.2, and 8.14C for egg, larvae, and pupae, and egg to adult development

- Methods: same analysis as sources above. Use Table 6 which used calculated average temperatures.

		Eggs			Larvae			Pupae			Egg to Ad	lult
Temp C	Temp F	Days	1/days	Temp C	Days	1/days	Temp C	Days	1/days	Temp C	Days	1/days
8.85	47.93	138.2	0.0072359	9.1	190.75	0.0052425	8	133.2	0.0075075	9	328.45	0.003045
14.47	58.046	14.08	0.0710227	13.88	38.02	0.0263019	13.65	24.2	0.0413223	14	76.3	0.013106
19.77	67.586	7.88	0.1269036	19.67	19.88	0.0503018	19.67	12.06	0.0829187	19.7	39.82	0.025113
27.21	80.978	5.13	0.1949318	27.14	12.22	0.0818331	27.1	6.48	0.154321	27.1	. 23.83	0.041964
		slope	0.010212			0.0042328			0.0076695			0.002152
		intercept	-0.079452			-0.032932			-0.059669			-0.01674
		R-sq	0.9972365			0.9998877			0.9871832			0.999175
	Tlow	-a/b	7.7803	DDF46		7.7801	DDF46		7.7801	DDF46		7.7800 DI
	DDReq	1/slope	97.9	176.3		236.3	425.3		130.4	234.7		464.7

Results: At Tlow of 7.78C/46F, DD req.s for egg, larvae, pupae, and egg to adult were: 98, 236, 130 and 465 DDC, and 176, 425, 235, and 837DDF

average R-sq 0.995870547

overall avg. R-sq 0.975595685

5. Erdogan, P. and N.E. Babaroglu. 2014. Life table of the tomato leaf miner, Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae)

J. Agric. Faculty of Gaziosmanpasa Univ. http://ziraatdergi.gop.edu.tr/Makaleler/1840340134_80-89.pdf

- Studies using NW Turkish population (Beypazari Ankara) reared on tomato

- RH was 65+/-5%

From Table 2 &3: (females; maie	s similar but n	ot used her	e):		L	arvae		Egg to	Adult		Ov
	Egg L1	L2	L3	L4	to	otal	pupae	Adult	Longevity P	re-OV	period
Temp C Days	3.96	2.49	2.32	2.52	3.79	11.0	9.53	30.18	18.16	1.28	7.88
25.5 DDC7.78:	70	44	41	45	67	194	169	535	322	23	140
Temp F											
77.9 DDF46	126	79	74	80	121	350	304	963	579	41	251

Results: At Tlow of 10C/50F (only one temperatture of 25.5C used), DD req.s for egg, larvae, pupae, egg to adult and adult longevity are:	
61, 170, 148, 468 and 281 DDC, and 110, 306, 266, 842, and 507 DDF	
Also, at Tlow of 10C/50F, DD req.s for adult pre-OV and OV period are: 20 and 122 DDC, and 36 and 220 DDF	
Also, at Tlow of 10C/50F, DD req.s for L1, L2, L3, and L4 are: 39, 36, 39, and 59 DDC, and 69, 65, 70, and 106 DDF	

6. Sylla, S., T. Brevault, L. Monticelli, K. Diarra, and N. Desneux. 2019. Geographic variation of host preference by the invasive tomato leaf miner *Tuta absoluta:* implications for host range expansion. J. Pest Sci. 92:1387-1396. https://pubag.nal.usda.gov/catalog/6563098

-Methods: estimate egg to adult development times assuming lower threshold of 10C/50F

From Table 2 – egg to adult devel time for populations from France and Senegal on six solanaceous plants.

At 25 deg C (+/-1degC), 65% RH (+/-10%), 16hr daylength										
Fra	nce	Senegal								
tomato	25.2	21.2								
eggplant I	30.6	25.3								
potato	28.4	25.1								
eggplant I	28.7	28.5								
non preferred										
all died										
	28.2	25.0 Days								
	500	443 DDC7.78								
	900	798 DDF46								
	Fra tomato eggplant I potato eggplant I non preferred	France tomato 25.2 eggplant I 30.6 potato 28.4 eggplant I 28.7 non preferred all died 28.2 500								

-Results: egg to adult development estimates are 500 DDC/900 DDF (France) and 443 DDC/798 DDF (Senegal)

For tomato only:	434 DDC7.78	365 DDC7.78
	781 DDF46	657 DDF46

7. Pereyra, P. and N. Sanchez. 2006. Population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)

Neotropical Entomol. 35:671-6.

- Studies with populations in Argentina; Mostly life table params for tomato and potato hosts at one temp (25C/77F) -Methods: analyze data in Table 1 to determine developmental requirements of larvae at 25C and 60% RH

Host Plant		Days Larval Devel.	DDC7.78	DDF46
S. lycopersicum	tomato	12.4	214	384
S. tuberosum	potato	14	241	. 434

Results: Larval development required ca. 214 and 241 DDC7.78 and 384 and 434 DDF46 for tomato and potato host plants, respectively.

8. Mansour, R., A. Cherif, S. Attia-Barhoumi, L. Zappala, K. Grissa-Lebdi. 2019. Tuta absoluta inTunisia: ten years of invasion and pest management. Phytoparasitica 47:461-474.

- In NE Tunisia can develop 4 generations between Nov and May
- 3 male flight peaks between Jan. and May (Cherif et al. 2013)
- Between Mar and July, 4-5 male flight peaks w/higher activity in summer, and 3 gens for eggs and larvae in open-field tomatoes in NE Tunisia [Cherif and Grissa-Lebdi (2017)]

9. Asma, C. and K. Lebdi-Grissa. 2017. Population dynamics of the tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Tunisia natural conditions. J. Ent and Zoo Studies 5:427-432.

- In NE Tunesia (Bou Slim, Zaghouan Province) 5 generations April, May, June, July and August (monitoring began in April)
- In Takelsa (Nabeul Province) had 4 peaks/generations during this same time; catch more frequent during summer hotter months, up to 380 males/trap/week

From Table 2 avg Temps, can estimate rough DDs for each month:

Zaghouan 2014: (Bou slim)

Zagnouan 2014: (Bo	u siim)					
	April Ma	ay Ju	ine July	Aug	AVG	DDC/gen
Temp C	16.7	19.5	25.2	27.2	28.60	23 DDF/gen
DDC7.78:	268	352	523	583	625	470 \leftarrow 5 peaks and claim this equals 5 gen.s during this period so rough avg 470 DDC/gen = 846 DDF/gen
DDF46						846 Alternatively, 4 gens during this time would be:575 DDC/gen = 1035 DDF/gen – better matching Sources #1&2 above
Nabeul 2016 (Takels	a)				AVG	
Temp C	20.4	19.5	23.2	26.3	26.2	23
DDC7.78:	379	352	463	556	553	460 ← 4 peaks assume equals 4 gen.s: 460 DDC/gen = 828 DDF/gen – good match sources 1&2 above
DDF46						828

- Results: possibly 575 DDC/gen in Zaghouan and 460 DDC/gen in Takelsa, populations higher in Takelsa perhaps assoc. with higher RH levels (avg 68% vs. 37%)

10. Rasheed, V.A., S.R.K. Rao, T.R. Babu, T.M. Krishna, B.V.B. Reddy, and G.M. Naidu. 2018. Biology and morphometrics of tomato pinworm, *Tuta absoluta* (Meyrick) on tomato. Int. J. Curr. Microbiol. App. Sci. 7:3191-3200

- Studies in Tirupati, India at 25+/-2 deg. C and 75+/-2% RH

- Methods: Determine temperature vs development rates based on results in Tables 1& 2.

	Egg	Larvae	Pupae	Egg to Adul	Pre-OV	Ovipos	25% OV	Post-OV	Female Lon EL	P+PreOV+25%OV
Days	4.14	12.25	7.81	24.19	1.6	6.2	1.24	2.55	14.75	27.03
Est DDC7.7	'E 71.3	3 210.9	134.5	416.6	27.6	106.8	21.4	43.9	254.0	465.5
Est DDF46	128.3	379.7	242.1	749.8	49.6	192.2	38.4	79.0	457.2	837.8
	L1	L2	L3	L4	L1-4					
Days	2.08	3 2.75	3.56	3.86	12.25					
Est DDC7.7	' t 35.8	3 47.4	61.3	66.5	210.9					
Est DDF46	64.5	5 85.2	110.3	119.6	379.7					

- Results: estimates from a single temp (25C) but includes adult pre-OV, OV, post-OV, and longevity

11. Summary table for tomato as host	Egg		Larvae		Pupae		Egg to Adu	lt	Pre-OV		OV (or adult lo	ngev)	E+L+P+PreO	/+20%OV
Source:	DDC7.78 D	DDF46	DDC7.78	DDF46	DDC7.78	DDF46	DDC7.78 D	DF46	DDC7.78 DDF46		DDC7.78 DD	F46	DDC7.78	DDF46
1. Cherif et al. 2019 (Tunisia)	58	105	231	. 415	5 118	213	414	746	6		188	338	492	885
2a. Mahdi, K, S. Doumandji 2013 (Algeria)	89	159	175	315	5 158	284	423	761	_		150	270.7	489	880
2b. data cited in above source	74	133	236	426	5 125	226	436	784	Ļ					
3. Krechemer and Foerster 2015 (Brazil)	66	119	216	388	3 128	230	411	740) 24.2	43.6	204	366.5	474	853
4. Barrientos et al. 1998 (Chile)	98	176	236	425	5 130	235	465	837	,					
5. Erdogan and Babaroglu 2014 (Turkey)	70	126	194	350	0 169	304	535	963	3 23	41	140	251	484	871
6. Sylla et al. 2019 (France and Senegal)							434	781	-					
7. Pereyra and Sanchez 2006 (Argentina)			214	384	1									
9a. Asma and Lebdi-Grissa 2017A (Zaghouan Tunisia	l)												470	846
9b. Asma and Lebdi-Grissa 2017B (Nabeul Tunisia)													460	828
10. Rasheed et al. 2018 (India)	71	128	211	. 380) 134	242	417	750	28	50	150.7	271.2	474	854
Averages	75	135				248		795		45	166	300		860
St. Dev.	13.6	24.5	21.4	38.5	5 18.5	33.3	41.3	74.4	2.5	4.5	27.7	49.8	11.1	20.0
CV	18.2	18.2	10.0	10.0	0 13.4	13.5	9.4	9.4	10.0	10.0	16.6	16.6	2.3	2.3
mean C.V.	11.4 (0	compare to	o using 10C	/50F as lov	ver threshold	mean C.V. =	= 13.7)							

12. Model	Stages Summary			
	Species:	Tuta absolut	a	
	Common Name & abbrev:	Tomato leaf	miner (TABS)	
	Country of Origin, data from:	South Ameri	ca (S. Brazil,	Chile) – native region and Tunisia, Algeria, Turkey, France, Senegal – invaded regions
	Pest of:	Vegetables i	ncluding toma	ato, eggplant and peppers
	Validation Status:	Not validate	d; no spring a	ctivity data available to calibrate model initialization (this model is therefore conservative and may predict too early)
		Deg.s (C)	Deg.s (F)	Notes:
	Lower Threshold:	7.78	46	Best overall Tlow for all stages, Pre-OV & OV may be slightly higher
	Upper Threshold:	35.00	95	Martins et al. High egg mortality above 30C/86F; but account for diff. in canopy temps vs weather shelters
	Calculation Method:		Single Sine	
	Model Start:		January 1 st	Temperate adapted species OW in reproductive diapause, may become active around 12hr Daylength (ca. Mar 20)
	Degree-Day Requirements	DDs (C)	DDs (F)	
	Egg	75	135	
	Larvae	214	385	
	Pupae	138	248	
	Egg-to-Adult	442	795	
	Pre-OV	25	45	
	Oviposition period	166	300	
	Egg-to-20% OV (gen. time)	478	860	
13. Model	Degree-Day Events Summary	DDs (C)	DDs (F)	
	First Spring Egg-Laying	25	45	assume adults overwinter and can begin laying eggs after nominal Pre-OV period
	Peak Spring Egg-Laying	58	105	
	First adults G1	500	900	
	Peak 1 st Gen. Egg-Laying	536	964	
	Peak 2 nd Gen. Egg-Laying	1013	1824	
	Peak 3 rd Gen. Egg-Laying	1491	2683	
	Peak 4 th Gen. Egg-Laying	1968	3543	
	Peak 5 th Gen. Egg-Laying	2446	4402	
	Peak 6 th Gen. Egg-Laying	2923	5262	
	Peak 7 th Gen. Egg-Laying	3401	6121	
	Peak 8th Gen. Egg-Laying	3878	6981	

14. Model Degree-Day Event Ranges Summary	<u>Begin C</u>	End C	<u>Begin F</u>	End F
OW Adults feed on nectar and find hosts	0	25	0	45
1 st Spring Egg-Laying by OW Adults	25	191	45	345
1 st Spring immatures (larvae, pupae)	314	528	565	951
1 st Gen. Adults Egg-Laying	503	980	905	1764
1 st and 2 nd Gen. Adults	981	1458	1765	2624
Max. 3 rd Gen. Adults; Peak 2 nd Gen.	1458	1936	2625	3484
Max. 4 th Gen. Adults; Peak 3 rd Gen.	1936	2413	3485	4344
Max. 5 th Gen. Adults	2414	2891	4345	5204
Max. 6th Gen. Adults; Peak 4th Gen.	2892	3369	5205	6064
Max. 7 th Gen. Adults; Peak 5 th Gen.	3369	3847	6065	6924
Max. 8 th Gen. Adults	3847	4324	6925	7784
Max. 9th Gen. Adults; Peak 6th Gen.	4325	4802	7785	8644
Max. 10 th Gen. Adults; Peak 7 th Gen.	4803	5280	8645	9504
Max. 11th Gen. Adults; Peak 8th Gen.	5281	5758	9505	10364
Max. 12 th Gen. Adults	5758	6236	10365	11224
9 to 13 or more overlapping generations	6236	6713	11225	12084

CLIMATE SUITABILITY MODEL

15. van Damme, V., N. Berkevens, R. Moerkens, E. Berckmoes, L. Wittemans, R.V.H. Casteels, L. Tirry, and P. Clercq. 2015. Overwintering potential of

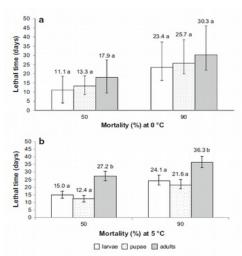
the invasive leafminerTuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in Western Europe. J. Pest Sci. 88:533-541.

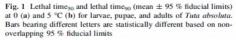
- The insect's cold hardiness and OW potential was assessed by determining: (1) the supercooling point of larvae, pupae, adults; (2) the lower lethal time at 0 and 5C; (3) reproductive diapause incidence

- The study was conducted because several sites in Belgium were infested with leafminers at the start of the growing season, suggesting they had overwintered in nearby greenhouses

- Results: (1) adults were more cold hardy than larvae and pupae at both 0 and 5C with the median lower lethal time averaging 17.9 and 27.2 days, respectively

(2) mean supercooling point was -18.2, -16.7, and -17.8C for larvea, pupae, and adults, respectively


(3) no reproductive diapause was observed


(4) day length affected the duration of the oviposition period - relationship varied with temperature

- Conclusions: (1) the pest is likely to successfully overwinter in commercial greenouses in Western Europe

(2) At a constant temp of 5C at least 3 weeks are needed to kill 90% of pupae and more than 1 month to kill 90% of adults - Notes: their values are more extreme than data collected by Kahrer et al. 2018

Exposure to 0C	Days	Weeks	
Days until 50% adult mortality	17	7.9	2.56
Days until 90% adult mortality	30	0.3	4.33
Exposure to 5C			
Days until 50% adult mortality	27	7.2	3.89
Days until 90% adult mortality	36	6.3	5.19

16. Kahrer, A., A. Moyses, L. Hochfellner, W. Tiefenbrunner, A. Egartner, T. Miglbauer, K. Mullner, L. Reibacher, C. Pilz, J. Votzi, and H. Scheifinger. 2018. Modelling time-varying low-temperature-induced mortality rates for puae of *Tuta absoluta* (Gelechiidae, Lepidoptera), J. Appl. Entomol. 143:1143-1153.

- Goal: establish a mathematical model for the accumulation of hourly mortalities of *T. absoluta* at variable temps

- Pupae are the most frost tolerant stage of the species; so they focused on pupae
- Subjected pupae to ~14 days of cooling at 6C in order to induce "cold adaptation"
- Calculated Lt99.99 (mortalities near 99.99%) at -10, -8, -6, -4, -2, 0, 2, 4 and 6C

- The relationship between time and mortality was tested by holding pupae at a fixed temp of -6C (mean values are in Fig. 2, below); relationship quantified w/ a 3 param Weibull function

- Results: (1) the Weibull function described 99.8% of the variation in Lt99.99 values at the various temps

(2) the control group held at 6C had a mean mortality of 27.8% (this is lower than van Damme et al. 2015, at 90%) (3) no survival was possible at -17.5C

Analysis based on their data

Max. Survival At 4C Days Weeks 75 10.71

- To calculate a cold stress rate (THCS), following CLIMEX manual

* Entire population is likely to die after being exposed to 10.7 weeks of 4C, so stress has to accumulate to equal 1 or more across those 10.71 weeks

* This translates to a rate of 0.09 (1 week/10.71 weeks)

- However using this threshold and rate (even when rate = 0.045) excluded it even from much of Mediterranean coastline (where many records are)

- CLIMEX assumes that cold stress occurrs from starvation; whereas this experiment was measuring death by cold exposure

- After calibrating THCS based on field population records for Europe, settled on value of 0.001

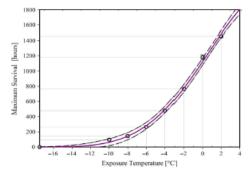


FIGURE 1 Maximum temporal survival (Lt_{99,99}) of cold adapted young pupse of *Tuta absoluta* at various low temperatures. The data were fitted by a Weibull function presented as Equation 1. The dashed line shows the 95% confidence band

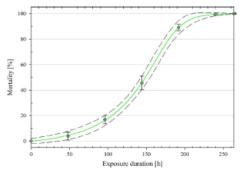
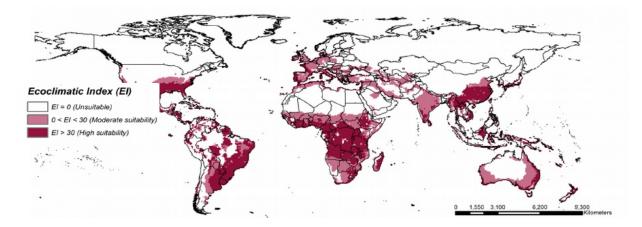


FIGURE 2 Accumulated mortalities of cold adapted pupae of Tuta absolute exposed to a constant frost of $-\delta^{\circ}C$. The dashed line shows the 95% confidence band. The fitted curve is described by a sigmoidal function (Equation 2)

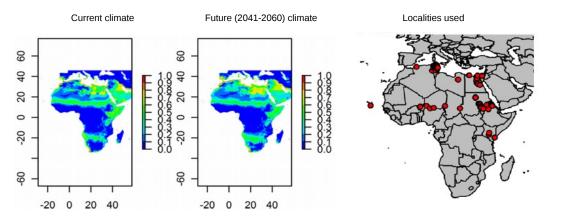

17. Santana, P., L. Kumar, R.S. da Silva, and M.C. Picanço. 2019. Global geographic distribution of *Tuta absoluta* as affected by climate change. J. Pest Sci. 92:1373-1385.

- Optimized CLIMEX parameters from three previous CLIMEX studies on species (Desneux et al. 2010; Tonnang et al. 2015; Xian et al. 2017)
- In the calibration step, the initial model was based on areas where it is known to be absent in NW Brazil and present in central regions
- They applied a hot-wet stress parameter because this resulted in more accurate predictions
- In the validation step, output was compared to known distributions in Brazil by quantifying percentage of points that fell in suitable areas
- Additionally, they visualized output against known distributions in other parts of the world

Issues with this study

- Their cold stress param (TTCS = 7) appears to have no basis. They state it is based off of Martins et al. (2016) data, but these authors did not measure survival at temps lower than 17C

- Overall in considering these errors and omissions, it was determined that cold stress params need to be adjusted (see also van Damme et al. 2015; Kahrer et al. 2018)


18. Biber-Freudenberger, L., J. Ziemacki, H. Tonnang, and C. Borgemeister. 2016. Future risks of pest species under changing climate conditions. PLoS ONE 11:1-17. 10.1371/journal.pone.0153237

- Used Maxent (a correlative niche modeling program) to predict current and future climate suitability for T. absoluta and 2 other insect pests in Africa under

- BIO12 (annual precip) and BIO6 (min temp of coldest month) were the most important variables in the model

- Map results for T. absoluta are shown below (froms Fig. 2)

- They used very few locality records to train the model (see below, right), which likely explains why the predicted distribution in Africa is so different than CLIMEX models

19. Desneux, N., E. Wajnberg, K.A.G. Wyckhuys, G. Burgio et al. 2010. Biological invasion of European tomato crops by *Tuta absoluta*

ecology, geographic expansion and prospects for biological control. J. Pest. Sci 83:197-215.

- An earlier CLIMEX model for the species, but their chill stress threshold better predicts known field distribution of the species in the European Mediterranean than other 2 CLIMEX studies

- They used TTCS = 3 and THCS = -0.001

- However using Santana et al's (2019) parameters with their TTCS/THCS values predicts high suitability throughout much of Europe, where the species is only known to be established in greenhouses (below right)

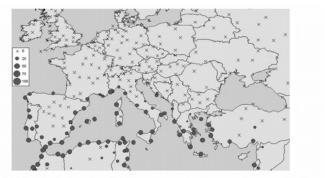
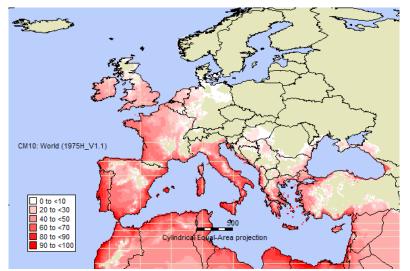



Fig. 2 The predicted distribution Ecoclimatic Index (EI) of *Tuta* absoluta in Europe and Netth African countries. The dots represent EI values with increasing dots' size indicating higher EI values. The higher the EI value, the more suitable the climate at that location (EI ~ 01: species could survive, 30: very favourable, Statherst et al. 2007). Biological parameters of *T. absoluta* used in the model are from Marcano (1995). Betancourt et al. (1996) and Barrientos et al. (1998). The potential distribution of *T. absoluta* used in the model are establishment in Europe (in the early 2008) and its presence in South America. Information from South America were included (more than 150 locations from Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Urugusy and Venezuela were used during the parameter fitting process). Parameters used in Climex model: moisture index: SM0 = 0.1, SM1 = 0.4, SM2 = 0.7, SM3 = 2; temperature index: DV0 = 8, DV1 = 20, DV2 = 25, DV3 = 35; cold Stress: TTCS = 3, THCS = -0.001, DTCS = 15, DHCS = -0.001, TCSA = 0, heat Stress: TTHS = 35, THHS = 0.015, DTHS = 0, DHHS = 0; dry Stress: SMDS = 0.1, HDS = -0.01; wet Stress: SMWS = 2, HWS = 0.002; day degree accumulation above DVCS: DVC3 = 8, DV4 = 100; day degree accumulation above DVCS: DVHS = 35; degree-days per generation: PDD = 460

20. Han, P., Hayram, Y., Shaltiel-Harpaz, L., Ensanli, T. et al. 2018. *Tuta absoluta* continues to disperse in Asia: damage, ongoing management and future challenges. J. Pest Sci. 92:1317-1327.

- The study reviews the spread and status of the species in Asia, but also presents their own CLIMEX model
- Their CLIMEX model appears to overpredict the species' distribution in South America compared to Santana et al. 2018, who validated their South America model using records
- Their TTCS and THCS values came from previous studies (Desneux et al. 2010; Source 19, above); so it appears they overlaid a blue polygon on top of the suitable areas in northern Europe

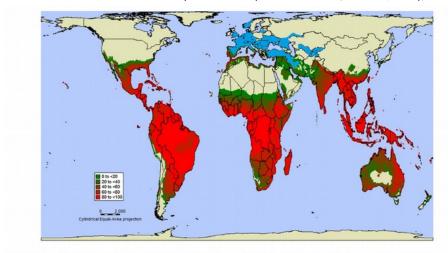


Fig.1 Predicted distribution on Eco-climatic Index (EI) of *Tua absoluta* throughout the world. EI values indicate the suitability of this pest (i.e. green and red regions). The blue are the invaded areas by this pest but outside of suitable areas for the moth. The higher the EI values are the more suitable climate under which *T. absoluta* could survive (Ei=0: cannot survive, EI – 10: species could survive, 30: very favourable, Sutherst et al. 2007). Parameters used in CLIMEX model: moisture index: temperature index: NO=8, DV=20, DV=20,

DV2=30, DV3=42; cold Stress: TTCS=3, THCS=-0.001, DTCS=15, DHCS=-0.001, TTCSA=0, THCSA=0; heat Stress: TTHS=42, THHS=0.0015, DTHS=0, DHHS=0; dry Stress: SMDS=0.1, HDS=-0.01; wet Stress: SMWS=2, HWS=0.002; day degree accumulation above DVO: DVO=8, DV3=42, MTS=7; day degree accumulation above DVCS: DVCS=8, DV4=100; day degree accumulation above DVHS=35; degree-days per generation: PDD=460. (Color figure online)

21. GBIF.org, search for *Tuta absoluta* records; accessed 1/13/20

Plus additional field population records collected from the literature

- Visualized records for Europe in an effort to refine an appropriate CLIMEX cold stress threshold
- Localities in Belgium are from individuals that overwintered in greenhouses not populations established outdoors year round
- The data download provided no info on whether records were from greenhouses or field, so could not use for CLIMEX model calibration
- Appears that localities are only in southern Europe along Mediterranean coast; this is supported by the Maxent model of Biber-Freudenberger et al. (2016)

Known field populations of T. absoluta in Europe / Turkey / Iran

- Additional records may further help fit a CLIMEX model; however, the ones here support the assertion that the species is primarily limited to warm/humid areas along the Mediterranean coast (in Europe/Turkey)

Locality	<u>Country</u>	Lat Lo	Source	
Grosseto Province	Italy	42.76	11.11 Balzan and Moonen (2012) Bulletin OEPP/EPPO Bulletin 42:217-225	
NE site 1	Spain	42.04	3.18 Gabarra et al. (2014) BioControl 59:45-54	
NE site 2	Spain	40.67	0.58 Gabarra et al. (2014) BioControl 59:45-54	
NE site 3	Spain	41.63	0.60 Gabarra et al. (2014) BioControl 59:45-54	
Central site 1	Spain	40.30	0.27 Gabarra et al. (2014) BioControl 59:45-54	
Central site 2	Spain	39.39	-0.52 Gabarra et al. (2014) BioControl 59:45-54	
SE site 1	Spain	36.83	-2.55 Gabarra et al. (2014) BioControl 59:45-54	
SE site 2	Spain	36.84	-2.44 Gabarra et al. (2014) BioControl 59:45-54	
SE site 3	Spain	36.74	-2.13 Gabarra et al. (2014) BioControl 59:45-54	
Bologna	Italy	44.50	11.26 iNaturalist research grade	
Belvedere	Italy	42.08	12.54 iNaturalist research grade	
Macchione	Italy	41.51	13.34 iNaturalist research grade	
Yenişehir, Bursa	Turkey	40.26	29.65 Kovanci and Pehlevan (2013) 24th Intl Sci-Expert Conference of Agriculture and Food Industry – Sarajevo 2013	
Izmir Province	Turkey	38.32	26.81 Kılıç (2010) Phytoparasitica 38:243-244	
Urmia city	Iran	38.04	45.07 Baniameri and Cheraghani (2012)	
Shiraz, Fars Prov.	Iran	25.59	52.58 Pezhman and Saeidi (2018) Not Sci Biol 10:475-484	
Khatlon region	Tajikstan	37.82	69.12 Saidov et al. (2018) Fla Entomol 101:147-149 (field and greenhouse)	
Dist of Repub Subord	lin Tajikstan	38.71	69.28 Saidov et al. (2018) Fla Entomol 101:147-149 (field and greenhouse)	
Hula Valley	Israel	33.25	35.58 Shaltiel-Harpaz et al. (2015) J Econ Entomol 109:120-131	
Beit Shean Valley	Israel	32.50	35.50 Shaltiel-Harpaz et al. (2015) J Econ Entomol 109:120-131	
Bismil, Diyarbakır	Turkey	37.85	40.67 Bayram et al. (2014) Bitki Koruma Bulteni 54:343-354 Seems to be central - OW in greenhouses?	
Ergani Co., Diyarbaki	r Turkey	38.27	39.76 Bayram et al. (2014) Bitki Koruma Bulteni 54:343-354 Seems to be central - OW in greenhouses?	
Preveza	Greece	38.97	20.75 Roditakis and Papachristos (2010) Bulletin OEPP/EPPO 40:163-166 Unclear if greenhouse/field (both situations reporte	ed)
Axaia	Greece	38.15	21.54 Roditakis and Papachristos (2010) Bulletin OEPP/EPPO 40:163-166 Unclear if greenhouse/field (both situations reporte	ed)
Trifilia	Greece	37.23	21.69 Roditakis and Papachristos (2010) Bulletin OEPP/EPPO 40:163-166 Unclear if greenhouse/field (both situations reporte	ed)
Stajkovce	Serbia	42.99	22.06 Toševski et al. (2011) Pestic Phytomed (Belgrade) 26:197-204 Authors claim the population is established here	

22. CLIMEX model generated for this study

Parameters used in final CLIMEX model (modified from Santana et al. 2019)

Moisture Index SM0 SM1 SM2 SM3 0.1 0.4 1.6 2 **Temperature Index** DV0 DV1 DV2 DV3 7 30 34.6 14

Cold Stress (new)

 TTCS
 THCS
 DTCS
 DHCS
 TTCSA
 THCSA

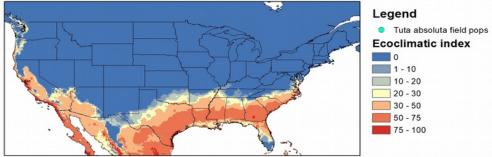
 4
 -0.001
 0
 0
 0
 0
 0

Heat Stress

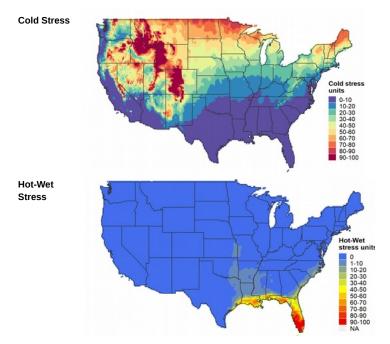
 TTHS
 THHS
 DTHS
 DHHS

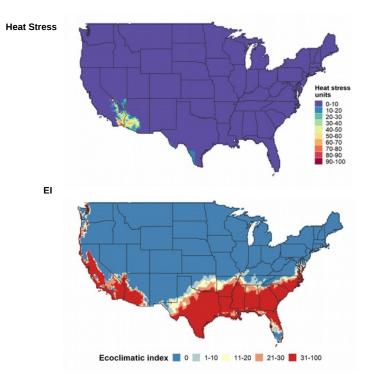
 34.6
 0.0001
 0
 0

 Dry Stress
 SMDS
 HDS
 0.1
 -0.01


Eurasia field populations

Wet Stress SMWS HWS 2 0.015 Hot-Wet Stress TTHW MTHW PHW 30 0.6 0.003 Day-degree accumulation above DV0 DV0 DV3 MTS 7 34.6 7 Day-degree accumulation above DVCS DVCS *DV4 MTS 10 100 7 Day-degree accumulation above DVHS DVHS *DV4 MTS 40 100 7


Degree-days per Generation PDD 460


Lines neu populations

CONUS

Figures for CONUS generated using these CLIMEX parameters - Stress unit values have been scaled from 0 to 100

23. Final review of parameters

Thresholds, degree-days and events used in Tomato leafminer model:								
Parameter abbr.	Description	degF	degC	DDF	DDC			
eggLDT	egg lower dev threshold	46.0	7.8	-	-			
eggUDT	egg upper dev threshold	95.0	35.0	-	-			
larvaeLDT	larvae lower dev threshold	46.0	7.8	-	-			
larvaeUDT	larvae upper dev threshold	95.0	35.0	-	-			
pupaeLDT	pupae lower dev threshold	46.0	7.8	-	-			
pupaeUDT	pupae upper dev threshold	95.0	35.0	-	-			
adultLDT	adult lower develpmental threshold	46.0	7.8	-	-			
adultUDT	adult upper dev threshold	95.0	35.0	-	-			
eggDD	duration of egg stage in DDs	-	-	135	75			
larvaeDD	duration of larvae stage in DDs	-	-	385	214			
pupaeDD	duration of pupae stage in DDs	-	-	248	138			
adultDD	duration of adult stage in DDs	-	-	150	83			
Gen TimeDD	duration of generations in Dds	-	-	860	478			
OWadultDD	DDs until OWadults emerge	-	-	45	25			
eggEventDD	DDs into egg stage when hatching begins	-	-	135	75			
larvaeEventDD	DDs into larvae stage when mid-larval occurs	-	-	193	107			
pupaeEventDD	DDs at end of pupae stage - first adult emergence	-	-	248	138			
adultEventDD	DDs into adult stage when 1st oviposition occurs	-	-	45	25			

Parameter abbr.	Description	degF	degC	DDF	DDC
chillstress_threshold	chill stress threshold	35.6	2.0	-	-
chillstress_units_max1	chill degree day limit when most individuals die	-	-	540	300
chillstress_units_max2	chill degree day limit when all individuals die	-	-	927	515
heatstress_threshold	heat stress threshold	98.6	37.0	-	-
heatstress_units_max1	heat stress degree day limit when most individuals die	-	-	1080	600
heatstress_units_max2	heat stress degree day limit when all individuals die	-	-	1710	950
distro_mean	average DDs to emergence	-	-	45	25
distro_var	variation in DDs to emergence	-	-	360	200
xdist1	minimum DDs (°C) to emergence	-	-	2	1
xdist2	maximum DDs (°C) to emergence	-	-	108	60
distro_shape	shape of the distribution	-	-	normal	