Phenology/Degree-Day and Climate Suitability Model Analysis – Vers. 2, Feb. 26, 2020 by Len Coop and Brittany Barker for USPEST.ORG at Oregon State University, Oregon IPM Center Japanese Pine Sawyer Beetle Monochamus alternatus (Hope) [Coleoptera: Cerambycidae] Hosts: Pinus spp. (pine), fir, cedar, larch, spruce Damage: wood boring beetle that also vectors pinewood nematode Goal: Develop a phenology model and temperature-based climate suitability model using available literature and weather data analysis

Steven Valley, Oregon Department of Agriculture, Bugwood.org

All other images from https://wiki.bugwood.org/HPIPM:Pine_Sawyer

(Note significant data used in final model highlighted in Salmon color)

1. NAPPFAST Model Documentation June 2008

Sources and Data:

Aphis 1; generic Dds; Base Temp. 13C 981 DD total Egg 85, larvae 369, pupae 333.3, adult 193 based on Enda 1975, Okuda 1973, Park et al 1992, and Rutherford et al 1987

Exclusion: Aphis 1 Generic 1; X < A where Avg temp -25C Prob of 1-3 gens Exclus: Prob of unfav temps -25C

2. Park, C.G, D.S. Kim, S.M. Lee, Y.S. Moon, Y.J. Chung, and D.S. Kim. 2014. A forecasting model for the adult emergence of overwintered *Monochamus alternatus* (Coleoptera: Cerambycidae) larvae based on degree-days in Korea. Appl Entomol. Zool: 49:35-42.

Selected Jan 1 start date; 11.9C as best low temp threshold

3 types of models for when they OW as: 4th instar (advance mode), 3rd instar (delay mode), regular mode (blend of 3rd and 4th instars DD regs: 5% emerge 25% emerge 50% emerge 75% emerge 90% emerge

DD Teys.	570 emery	10% emerg	25% emerg	50% emerg	15% emerg	90% emerg	
preliminary (igno	210	240	321	416	510	591	
advance year	200	230	260	340	405	584	
Regular year	204	270	350	420	500	600	
Delay year	245	310	410	500	580	635	
avg of adv+reg	202	250	305	380	452.5	592	
avg of adv+reg	196	243	297	370	440	576 C	onvert 11.9 to 12.2 Tlower

3. Kobayashi F., A. Yamane, and T. Ikeda. 1984. The Japanese pine sawyerbeetle as the vector of pine wilt disease.

Annu. Rev. Entomol. 29:115-135

Tlow=11.9 or 12.5C DD to 50% emerge: 540 (11.9base) or 500 (12.5base) (and see below)

4. Togashi, K. 1989. Development of Monochamus alternatus Hope (Coleoptera: Cerambycidae)

in relation to oviposition time. Jap. J. Appl. Entomol. Zool. 33:1-8.

Ovip sometimes as late as Oct in central Japan

5. Togashi K. and H. Magira. 1981. Age-specific survival rate and fecundity of the adult Japanese pine sawyer Monochamus alternatus Hope (Coleoptera: Cerambycidae), at different emergence times. App. Ent. Zool. 16: 351-361.

Avg life-span of adults is 7 weeks in outdoor cages in central Japan

6. Song, S.H., L.Q. Zang, H.H. Huang, and X.M. Cui. 1991. Preliminary study of biology of *Monochamus alternatus* Hope. Forest Sci. and Technol. 6:9-13.

Avg life-span of adults is 12-13 weeks in outdoor cages in Guangdong Bivoltine, adults first emerge Apr-May, 1st gen July-Aug If trivoltine emerge Mar-Apr, June-July, mid-Oct-early Nov

See detailed analysis (separate Tab in spreadsheet) for details: Estimated first emerge (bivoltine): ca 360 DDC (12.2 Tlow) Estimated first emerge (trivoltine): ca 200 DDC (12.2 Tlow) Notes: trivoltine assumption best matches #2 Park et al. 2014 above

7. Misc notes from CABI data sheet: http://www.cabi.org/isc/datasheet/34719

Wang 1988.

Univoltine in Jiansu China, bi or trivoltine in Guangdong (Song et al 1991)

Adults emerge reproductively immature; feed on bark of pine twigs; males take at least 5 days before mating; femailes take at least 3 weeks before able to oviposit; large variation in Pre-OV period

Immature adults disperse in random direction; attracted to extracts from healthy Pinus tree trunks. Mature adults attracted by monoterpenes and ethanol emitted from damaged/dying Pinus trees. Not a strong flyer, fly more while immature; found to move 7 to 40 m per week in Pinus thunbergii stands (Togashi 1990) Known to fly up to 1-2 km (Fujioka 1993) Adults are nocturnal (Nishimura 1973)

Age-specific fecundity curve is unimodal under outdoor conditions; Mean fecundity was 86 in Ishikawa (Togashi and Magira 1981) Mean fecundity was 33 in Nara (Shibata 1987); 157, 78, and 24 for early, mid, and late emerged females (Togashi and Magira 1981) Mean fecundity was 88 in Jiangsu China (Wang, 1988) Lifetime fecundity ranges from 0 to 343

Summary of Degree-Day Estimates

Eggs

DD regs: C Tlow: C

Notes

85.5 12.9

10 to 12 days at 20 C, 5-7 days at 25 C, and 4-5 days at 30 C

References Okuda 1973 rev. by Kobiashi et al. 1984

time to 50% adult emerg in spring from OW larvae (maybe warmer climate) rev. by Kobiashi et al. 1984 (Okuda 1973)

X-intercept m	ethod using Ya	nane 1974 d	ata:					
1	Temp	Rate (pupae)	days					
	12.2	0.00010	9999					
	25	0.08000	12.5					
	slope	0.00624						
	intercept	-0.07605						
	1/slope	160.2						
	X-intercept	12.2						
	DD reqs: C	Tlow: C						
	160	12.5	Estim. From above data poi	nt by Yamane 19	974			
	166	12.2	Estimated conversion from 2	160 at 12.5 (see	Appendix 1)			
	187	10.6	diapause obligate in Japan a in nature 17-19 days Refs 13,17 in review article	and facultative ir	n Taiwan			Okuda 1969 & Enda and Kitajima 1990 rev. by Kobiashi et al. 1984 rev. by Kobiashi et al. 1984
Adult Pre-OV	DD reas [.] C	Tlow [.] C	mating begins 10 days after	emergence; eg	gs not yet mat	ure in females up	on emerge	rev. by Kobiashi et al. 1984
	100	12.5	rough estim From above as	sumina emerae	mid-late marc	h		
	103	12.2	Estimated conversion from 2	100 at 12 5 (see	Appendix 1)			
					, .ppollant _)			
Adult OV			peak OV at 45 days after en	nera.				rev. by Kobiashi et al. 1984
			OV period ranges from 20 to	o 30 days with th	reshold of 21.	3 C		rev. by Kobiashi et al. 1984 (59 & 184)
	X-intercept met	hod using al	bove data:	X-intercept m	ethod using a	bove data; force	d through	12.5 C Tlow
·	Temp	Rate (PreOV)	<u>) days</u>	<u>Temp</u> <u>I</u>	Rate (PreOV)	<u>days</u>		
	21	0.00100	999	12.5	0.00100	999		(this is coarse and could be improved
	24	0.02273	44	24	0.02273	44		with access to refs such as 1984,
	28	0.04167	24	28	0.04167	24		Takizawa 1980)
	30	0.05000	20	30	0.05000	20		,
	slope	0.00537		slope	0.00271			
	intercept	0.10939		intercept	0.03776			
	1/slope	186.3		1/slope	368.5			

Therefore a rough estimate of OV period is 368 DD (12.5 Tlow) 50% OV period would be 184 DD (12.5 Tlow), estim. 35% OV would be 100 DD (rough estim.)

Pupae

	DD reqs: C	Tlow: C		
	100	12.5	value to use to estimate generation time	
	105	12.2	Estimated conversion nom 100 at 12.3 (see Appendix 1)	
Adults			adult flight ceases below 18 C movement (dispersal) ranges from 800m to 3.3 km	rev. by Kobiashi et al. 1984 rev. by Kobiashi et al. 1984
Gen Time				
	DD reqs: C	Tlow: C	Normal: 1 gen/yr; cooler climate: 1 gen/2 yrs;	rev. by Kobiashi et al. 1984
	1065	12.5	Estimated from above (Egg+Larvae+Pupae+PreOV+35%OV); mainly Okuda 1973	
	981	13	Nappfast model	
	1102	12.2	Estimated conversion from 1065 at 12.5 (see Appendix 1)	
OW to 5% (f	irst) emerge			
	DD reqs: C	Tlow: C		
	360	12.2	Assuming Bivoltine; China near Hong Kong (warm climate)	based on Song et al 1991; see analysis
	200	12.2	Assuming Trivoltine; China near Hong Kong (warm climate)	based on Song et al 1991; see analysis
	196 Conclusion: Llos	12.2	Estimated conversion from 202 at 11.9 (see Appendix 1)	Park et al 2014 (Korea); table above
	Conclusion. Use	: 200 DDC (1	(2.2) as instemergence from two sources	
OW to 50%	emerge			
	DD reas: C	Tlow [.] C		
	500	11.9	time to 50% adult emerg in spring from OW larvae (maybe cooler climate)	rev. by Kobiashi et al. 1984
	540	12.5	time to 50% adult emerg in spring from OW larvae (maybe warmer climate)	rev. by Kobiashi et al. 1984 (Okuda 1973)
	380	11.9		Park et al 2014 (Korea)
	370	12.2	Estimated conversion from 380 at 11.9 (see Appendix 1)	
OW to 90%	emerge			
	DD reas: C	Tlow: C		
	592	11.9		Park et al 2014 (Korea)
	576	12.2	Estimated conversion from 592 at 11.9 (see Appendix 1)	
Summary	of Phenology	Model for	Monochamus alternatus (using a common lower threshold of 12.2	C)
Start Date:	January 1 st			
Calc Method	1: Single Sine			
Therese			Deg. C Deg. F	
Tupper			12.2 54.0 35 95 (nominal value based on climate suitabili	ty studies
Tupper				ly studies

54.0 95 (nominal value based on climate suitability studies see below)

Primary Events	<u>DD C</u>	<u>DD F</u>
Egg	83	149
Larvae	647	1164
Pupae	166	298
Egg to Adult	895	1611
Pre-OV+35% OV	207	373
Generation Time	1102	1983
Events Table		
OW to 5% (first) emerge	200	360
OW to 50% emerge	370	666
OW to 90% emerge	576	1037
2 nd Generation 5% emerge	1302	2344
2 nd Generation 50% emerge	1472	2650
2 nd Generation 90% emerge	1678	3020
3 rd Generation 5% emerge	2404	4327
Full generation time (35% OV to 35% OV)	1102	1984
Note: only adult OV indicated to have a significant	ntly higher Tlower =	21.3 C;

Appendix – Estimated conversion from 12.5 C 1065DD \rightarrow 11.9 and to 12.2 C (=54F)

Strt Apr 1 Method used: 3 yrs x 4 locations where insect is likely to survive; calc Date of 1065 Dds @ 12.5; change Tlow to find Dds for same date

Code	AP525	AP525	AP525	KBGD	KBGD	KBGD
Loc	Anderson CA	Anderson CA	Anderson CA	Borger CO	Borger CO	Borger CO
Date 1065	07/23/15	07/28/14	07/23/13	07/25/15	07/20/14	07/16/13
Dds @ 11.9	1128	1145	1135	1133	1139	1120
Dds @ 12.2	1101	1112	1101	1101	1109	1092

KPBF	KPBF	KPBF	NNAG1	NNAG1	NNAG1	Average
Pine Bluff AR	Pine Bluff AR	Pine Bluff AR	Newnan GA	Newnan GA	Newnan GA	
07/13/15	07/22/14	07/20/13	07/12/15	07/22/14	07/26/13	
1143	1128	1127	1128	1133	1140	1133
1112	1097	1097	1097	1100	1107	1102

Climate suitability model

8. Ma, R-Y, S-G Hao, W-N Kong, J-H Sun, and L. Kang. 2006. Cold hardiness as a factor for assessing the potential distribution of the Japanese pine sawyer. Annals of Forest Science. 63:449-456.

- Studied the effects of low temps on survival of eggs, overwintering 4-5th instar larvae, pupae and adults
- Exposed eggs, pupa and adult individuals from -25 to 5C with 5C increments for 1/16 d; larvae were exposed to 7 low temps (from -25 to 5C with 5C increments)
- They estimated the potential distribution based on -10 and -4C isotherms of avg. Jan mean air temperature in China from 1961-1990, where:
 - 1) non-survial regions = below -10C isotherm
 - 2) dispersal regions = between -10 and -4C isotherms
 - 3) suitable survival regions = above -4C isotherm

NOTE: their "suitable distribution region" is farther north than the CLIMEX model of Kim et al. (2016) [source 8]
 Mortality rates did not significantly differ at 0, 5, and 25C, which suggests that cold stress doesn't affect the species much above 0C

Figure 3. Mortality (mean plus/minus S.E.) of dfferent stages after exposure to low temps for 1/16 d

100

105

110

115

120

Table 1. Lt50 (d) limits of 4-5th instar larvae exposed to low temperatures

<u>Temp</u>	<u>Lt50 (d)</u>	<u>Lt50 (w)</u>
-25	0	0.0
-20	0.1	0.0
-15	14.7	2.1
-10	35.8	5.1
-5	55.7	8.0
0	72.6	10.4
5	65.4	9.3
25	69	9.9

Figure 7. Potential distribution based on '-10 and -4C isotherms of avg. Jan mean temps (1961-1990)

9. Estay, S., F. Labra, R. Sepulveda, and L.D. Bacigalupe. 2014. Evaluating habitat suitability of *Monochamus* spp through climate-based niche modeling. PLoS ONE 9:e102592.

- Estimated climate suitability for five North American and four Eurasian Monochamus species using the Maxent approach

- For all species, total annual precipitation was the most important variable for the species in North America and in Eurasia

- 95% geographic kernel showed that M. alternatus occurred in

Variable Value T Ann -11.5-28C T Col -25.5-26.5 T War -4-30.5 ADD 0-8448 % RH 0-83.3 P 0-5576 Altitude -2-6512	Definition Mean annual temperature Mean temp of coldest month Mean temp of warmest month Annual accumulated degree-days Annual mean relative humidity Total annual precipitation Altitude
--	--

- The projected distribution in Asia is similar to the CLIMEX model (Source 10) below, except several points fall outside the suitability envelope (EI > 0)

Projection of the fitted model onto the 95% geographical kernel for M. alternatus (Fig. S6)

10. Kim, J., H. Jung, and Y-H Park. 2016. Predicting potential distribution of *Monochamus alternatus* Hope responding to climate change in Korea. Korean Journal of Applied Entomology. 55:501-511.

- Predicted the spatial distribution of the beetle in Korea under current and future climcates using CLIMEX

- They used climate data were a 10-yr average of data from 68 meterological stations (2006-2015)

- Their parameter sets included different values for development params DV0, DV1, DV2, DV3, and TTCS (cold stress threshold)

- An error matrix method was used to select and simulate the parameter sets showing the highest correlation with the actual distribution

- Results for future climate conditions showed a gradual expansion of the species throughout Korea
- It appears that cold stress contributes to low EI values at about 70 cold stress units (see white paper)
- It appears that their analysis supported Parameter Set 0 as the best set, although the paper being written in Korean makes this sort of unclear

Table 1. Initial parameter values of CLIMEX model

* Note: it is unclear if all of these values were used in their final model. The paper is written in Korean.

The word "initial" makes this unclear.

CLIMEX parameter	<u>Code</u>	<u>Value</u>	<u>Notes</u>
Temperature			
Lower temperature threshold (°C)	DV0	10.8	Set 0
Lower optimal temperature (°C)	DV1	15	Set 0
Upper optimal temperature (°C)	DV2	30	Set 0
Upper temperature threshold (°C)	DV3	33	Set 0
Degree-days per generation (°C days)	PDD	1690	
Moisture			
Lower soil moisture threshold	SM0	0.1	
Lower optimal soil moisture	SM1	0.55	
Upper optimal soil moisture	SM2	1.35	
Upper soil moisture threshold	SM3	4	
Cold stress			
Cold stress temperature threshold (°C)	TTCS	0	
Cold stress temperature rate (week–1)	THCS	-0.0008	
Heat stress			
Heat stress temperature threshold (°C)	TTHS	33	
Heat stress temperature rate (week–1)	THHS	0.0001	
Dry stress			
Dry stress threshold	SMDS	0.25	
Dry stress rate (week–1)	HDS	-0.001	
Wet stress			
Wet stress threshold	SMWS	4	
Wet stress rate (week–1)	HWS	0.0001	

11. Modifications to CLIMEX model of Kim et al. (2016) [Source 10]

- There are two issues with Kim et al's (2016) CLIMEX model:

1) several localities from Estay et al. map (Estay et al. 2014; source 9) fall within unsuitable areas according to CLIMEX (see below)

2) the species does not exhibit increased mortality until temperatures drop below 0C (Ma et al. 2006; source 8), but their TTCS is 8C

- Insufficient degree-days accumulate at northern range limit; the species is not excluded from cold stress even when TTCS is set very low (e.g., TTCS = -5)

- Most likely the species persists in these areas by taking more than 1 year to complete it's life cycle...

- Nevertheless the TTCS value was lowered from 8 to 0C, because Ma et al.'s (2006)[source 8] experiments support this value

- Outputs for EI were very similar, but now cold stress is lower in areas where the excluded localities are situated, so this is proably more realistic

Several northern localities where the species is established (outlined in pink, below) are excluded in the CLIMEX model (EI = 0) Cold stress may be too high in the CLIMEX model, resulting in the exclusion of these localities

CLIMEX model (Ecoclimatic index)

CLIMEX model (Cold stress)

Revised CLIMEX model (TTCS = 0 and THCS = -0.0003) - below

The cold stress threshold was decreased in the modified CLIMEX model, but EI values did not change much

Cold Stress

Ecoclimatic Index

Maxent model

<u>Comparison of EI and cold stress values in Asia and CONUS in using CLIMEX model w/ TTCS = 0 and THCS = -0.0003</u> Yellow dots are the localities for *M. alternatus* presented in Estay et al. (2014) Note that the cold stress = 70 break line corresponds roughly with the northernmost (-10C) isotherm of Ma et al. 2006 (Source 8) This suggests that the species would not be prevented from establishing in areas where cold stress is < 70

12. DDRP climate suitability model calibrated using modified CLIMEX model (source 11)

Fine-tuning stress parameters and limits in accordance w/ CLIMEX model resulted in:

	<u>Value</u>	<u>Units</u>
chill stress threshold	-4	С
limit 1 (mod. chill stress)	525	DDC
limit 2 (sev. chill stress)	800	DDC

All but a single locality record in the native range occur in areas where cold stress is less than 70 in CLIMEX, so the max2 limit in DDRP was adjusted to generally match the boundary where CLIMEX cold stress rose above 70

(a) CLIMEX cold stress units

	<u>Value</u>	<u>Units</u>	
heat stress threshold	36	С	
limit 1 (mod. heat stress)	800	DDC	
limit 2 (sev. heat stress)	1100	DDC	

El values were not lowered by heat stress in CLIMEX, so set heat stress limits very high in DDRP

Thresholds, degree-o	lays, events and climate suitability params used i	n Japane	se Pine Sav	<i>iyer</i> Beetle	model:
Parameter abbr.	Description	degF	degC	DDF	DDC
eggLDT	egg lower dev threshold	54.0	12.2	-	-
eggUDT	egg upper dev threshold	95.0	35.0	-	-
larvaeLDT	larvae lower dev threshold	54.0	12.2	-	-
larvaeUDT	larvae upper dev threshold	95.0	35.0	-	-
pupaeLDT	pupae lower dev threshold	54.0	12.2	-	-
pupaeUDT	pupae upper dev threshold	95.0	35.0	-	-
adultLDT	adult lower develpmental threshold	54.0	12.2	-	-
adultUDT	adult upper dev threshold	95.0	35.0	-	-
eggDD	duration of egg stage in DDs	-	-	149	83
larvaeDD	duration of larva stage in DDs	-	-	1164	647
pupaeDD	duration of pupa stage in DDs	-	-	298	166
adultDD	duration of adult (preOV + 35% OV) stage in DDs	-	-	373	207
OWpupaeDD	DDs until pre-OV adults emerge (no OW pupae)	-	-		
eggEventDD	DDs into egg stage when hatching begins	-	-		
larvaeEventDD	DDs into larvae stage when mid-larval development occur	-	-		
pupaeEventDD	DDs into preOV stage when adults becoume active	-	-		
adultEventDD	DDs into adult stage when peak (30% OV) oviposition occ	-	-		
chillstress_threshold	chill stress threshold	24.8	-4.0	-	-
chillstress_units_max1	chill degree day limit when most individuals die	-	-	945	525
chillstress_units_max2	chill degree day limit when all individuals die	-	-	1440	800
heatstress_threshold	heat stress threshold	96.8	36.0	-	-
heatstress_units_max1	heat stress degree day limit when most individuals die	-	-	1440	800
heatstress_units_max2	heat stress degree day limit when all individuals die	-	-	1980	1100
distro_mean	average DDs to OW pupation	-	-	367	204
distro_var	variation in DDs to OW pupation	-	-	5400	3000
xdist1	minimum DDs (°C) to OW pupation	-	-	18	10
xdist2	maximum DDs (°C) to OW pupation	-	-	738	410
distro_shape	shape of the distribution	-	-		normal

Thresholds, degree-days, events and climate suitability params used in Japanese Pine Sawyer Beetle model: