IPPC Model Synthesis Summary – Nov. 12, 2019 vers. 2.0

Light Brown Apple Moth Phenology (degree-day) Model *Epiphyas postvittana* (Walker) (Lepidoptera: Tortricidae) Analysis by Len Coop and Brittany Barker for use at Oregon State University Integrated Plant Protection Center website: https://uspest.org/wea

This is an invasive polyphagous insect newly established in California, known to feed on many fruit crops including apples, pears, grapes and citrus.

Summary of final proposed model:	DD (Celsius)	DD (F)
Tlow:	7	45
Thi:	30	88
Stage durations:		
Eggs	127	228
Larvae (male young apple)	348	627
Larvae (male old apple)	453	815
Larvae (female young apple)	407	732
Larvae (female old apple)	494	889
Pupae	128	230
Pre-OV to 5% egg laying	27	48
Pre-OV to 50% OV	71	128
Egg to 5% egg laying, young apple leaves	688	1238
Egg to 5% egg laying, old apple leaves	775	1395
Model params for USPEST.ORG:		
Start Date: Jan 1		
Peak OW/1st gen. pheromone trap catch:	275	495
Peak OW/1st gen. egg-laying:	364	656
Peak 2 nd gen. Egg-hatch:	491	884
Peak 2 nd gen. larvae	694	1250
Peak 2 nd gen trap catch:	1052	1894
Peak 3 rd gen. Egg-hatch:	1350	2430
Peak 3 rd gen. larvae	1597	2875
Peak 3 rd gen trap catch:	1827	3288
Peak 4 th gen. Egg-hatch:	2296	4134
Peak 4 th gen. Iarvae	2543	4578
Peak 4 th gen trap catch:	2602	4683

Sources:

1a. Danthanarayana 1975 – interpreted by Thomkins, A.R., D.R. Penman, R.B. Chapman, and S.P. Worner. 1987. An Evaluation of a phenological model (PETE) to assist insect pest control in apple orchards in Canterbury, New Zealand. New Zealand J. of Exp. Agric. 15:3, 381-388.

		Tlow (C)	Thi (C)	TIO	v (F)	Thi (F)	Tlow	(F)	Thi (F)	
	Tlow, Thi		7	31	44.6	i	87.8	45		88
Deg-days:	Egg	13	38		248.4			240.5		
	Larvae	30	63		653.4			632.5		
	Pupae	14	12		255.6	i		247.4		
	Pre-ov	:	33		59.4	ļ		57.5		
	Adult	18	33		329.4			318.9		
	Ca. Generatio	749	.2		1348.56	i		1305.4		

Biofix Date: 9/20 @ 120DD accumulated equiv. To 3/20 in Northern Hemisphere

in other words this PETE model biofix resets DD accum. To 120 on Sept. 20 as a default

Estimation of cohort distribution based on Table 1, Tomkins et al. 1987.

Table 1 has stage distribuions (using 15 substages per stage; 65% in last 3 substages of egg stage, 15% in first 2 stages of larval stage, 18% over final 13 substages of larval stage,

2% pupae). This result could be interpreted in two ways: 1) that thiis is in conflict with findings that suggest that overwintering success is greatest as 4th instar larvae.

2) OW distribution was pushed back due to winter effect: low host plant (food) quality plus low temperatures results in longer development than for later generations,

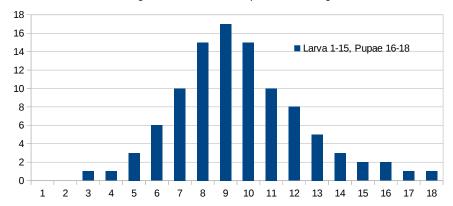

therefore artificially push the OW distribution earlier to lengthen OW generation time and thus account for this effect.

Table 1 as published:																		
Substage:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
Egg	0	0	0	0	0	0	0	0	0	0	0	0	30	25	10			
Larva	15	10	2	2	2	2	2	1	1	1	1	1	1	1	1			
Pupa	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0			
Modified to match assum	nption that mi	idpoint/peak is	ca. 4 th instar l	arvae														
approx. larval instar	1	1	2	2	3	3	4	4	4	5	5	5	6	6	6 p	upae (for gra	ph)
Substage	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Egg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Larva 1-15, Pupae 1	0	0	1	1	3	6	10	15	17	15	10	8	5	3	2	2	1	1
Pupa	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0			

Proposed OW Distribution

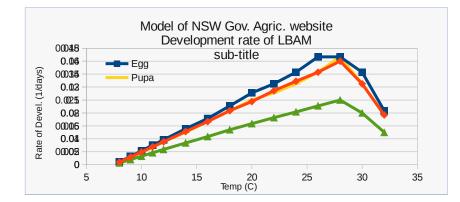
DDCs range larvae (substages 3-15): 12/15*494	395 DDC
DDCs range pupae (substages 1-3): 3/15*128	26 DDC
Total Dds range overwintering (basis for cohort spread):	420.8 DDC

Based on range in PETE model, midpoint from Buergi et al 2010

2. Gutierrez, AP, N. Mills, L. Ponti. 2010. Limits to the potential distribution of light brown apple moth in Arizona-California based on climate suitability and host plant availability. Biol. Invasions. 12:3319-3331 Analysis largely based on Danthanarayan 1975, 1976, and 1983

				b	1.36	
Tmin	6.8	Day	Tavg		phi(T)	Fecundity
Tmax	31.5		1	15	0.673042968	0
Tmidx	19.15		2	18	0.827655789	0
			3	20	0.903462427	0
			4	22	0.957454206	0
			5	24	0.989631124	0
			6	26	0.999993183	0
Eggs	Larvae		7	26	0.999993183	0
Tlow =	7.5 Tlow =		8	26	0.999993183	0
1/slope =	1/slope =		9	26	0.999993183	0
			10	26	0.999993183	0
			11	26	0.999993183	0

3. Zalom, F. UC Davis Presentation 4/29/2009 (slide on DD req.s, analysis based primarily on Geier and Breise 1981)


http://ucanr.org/sites/UCNFA/files/28824.pdf				5. Geier and	Briese 1981 S	ummarized fro	om below
	(C)		(F)	(C)	(F)	(F) see 6 belo	W
Tlow		7	45	7	44.6	45	
Thi		31	88	31	87.8	88	
Dds dev Egg		131	236	131	236	228	
Larvae		381	685	360	648	627	
Pupae		132	238	132	238	230	
Pre-ov		30	54	28	50	48	
50% OV		83	149	74	132	128	
Egg to 1 st Egg		621	1117	711	1279	1238	
Egg to 50% egg laying		673	1212	757	1362	1318	

Notes: Use female larval development on young apple leaves as most appropriate for generation time modeling. Male development on old apple is most appropriate for OW generation flight on young apple is most appropriate for 1st generation flight

4. NSW Australia Online LBAM development calculator, http://www.dpi.nsw.gov.au/agriculture/horticulture/citrus/health/pests/lbam-calculator

- As of Nov 2019, moved to:

https://www.dpi.nsw.gov.au/agriculture/horticulture/citrus/content/insects-diseases-disorders-and-biosecurity/inect-pest-factsheets/lbam-calculator

								interpre minimu	ım gen	
		Rate of dev				Days (Time to	1,	time v	Est ELP,Mate,	
	daily avg T		Larvae	Pupa	Total Gen	Egg	Larvae Pu			
			4 0.0009823183			234		256	1511 2557	
			3 0.0029498525			78		85	505	
			5 0.0049019608			47		51	305	
			3 0.0068965517			33		37	218	
			8 0.0088495575			26		28	170	
			6 0.0128205128		0.008403361	18		20	119	
			1 0.0166666667			14		15	92	
			1 0.0208333333			11		12	74	
			1 0.0243902439		0.015873016	9		10	63	
			5 0.0285714286			8		9	55	
			3 0.0322580645		0.020408163	7		8	49	
			7 0.0357142857			6		7	44	
		28 0.16666666		0.166666667	0.025	6		6	40	
		30 0.14285714		0.125	0.02	7		8	50	
			3 0.0192307692	0.076923077	0.0125	12	52	13	80	
		33				none				
						E+L+P	Est Mate + Pre-O		% OV Est. Time to 50% OV	/
	Slope		3 0.0019438842				ca.	21 days max OV p	period (Danth. 1975)	
	Intercept	-0.0676418	1 -0.014494632	-0.05705002	-0.00895588	Celsius				
DD req.s:	1/slope	112.6	514.43	130.24	816.26	757.27	58.99	111.11	11111 931	
Tlow/X-intrcpt:	-a/b	7.6	2 7.46	7.43	7.31					
approx. upper thre	eshold =	3	0 30	30	32					
Same converted to	o deg. F:					Fahrenheit			8 days	
		202.6	925.98	234.43	1469.27	1363.09	106.18		200 200 70F	
Tlow/X-intrcpt:		45.7	1 45.42	45.37	45.16					
approx. upper thre	eshold =	86.0	0 86.00	86.00	89.60					
									Est ELP, Mate,	
Standardize Tlow=	=45F	Egg	Larvae	Pupa		E+L+P	Est Mate + Pre-O	V	Pre-O <mark>V+50%</mark> OV	
DD req.s:		20	5 930	235		1370.00	106		200 1676	

5. Geier and Briese 1981. The Light Brown Apple Moth, Epiphyas postvittana (Walker): a native leafroller fostered by European settlement. pp. 131-155. In R. Kitching and R. Jones [eds.], 1981. The Ecology of Pests. Pub. By CSIRO, Melbourne, Australia. 254 pp.

Based on Fig. 3.		Rate of dev (1/da	ays)	Note: on Shore	ey Media in Lab (les	s optimal than app	le lvs)		
Deg.s C		Egg Fe	Egg Fem:Larv+Pup		Male:Larv+Pu Total Gen				
	Slope	0.00753	0.00159	0.00178					
	Intercept	-0.0524	-0.0109	-0.0126					
DD req.s:	1/slope	132.80	628.93	561.80					
Tlow/X-intrcpt:	-a/b	6.96	6.86	7.08					
approx. upper thre	eshold =	30	30	30					
Same converted to	o deg. F:	239.04	1132.08	1011.24					
Tlow/X-intrcpt:		44.53	44.34	44.74					
approx. upper thre	eshold =	86.00	86.00	86.00					
Standardize Tlow-	=45F			E	Est Fem:Larv Est M	lale:Larv			
DD req.s:		231	1096	979	866	749			

Based on Table 6.							Males						Females
							time v	t	ime v	Est ELP,Mate,	Est EL	Est ELI	Est ELP,Mate,
	Egg	Larvae	Larvae	Larvae	Larvae	Pupa	Total G	en T	Total Gen	Pre-OV,	Pre-O	Pre-O'l	Pre-OV,
		Males on	Males on	Females on	Females on		OV to 1	st moth (OV to 1 st moth	OV to 5% OV	OV to	OV to 0	OVto95%OV
Deg.s C base 7.0		young apple	l old apple	young apple	old apple			(On young app	le leaves (assi	ume ge	n 1-2)	
DD req.s:	13	1 36	0 46	8 420) 510) 1	.32	623	683	711	757	793	863
Tlow		7											
Thi	3	0											
Deg.s F base 44.6													
DD req.s:	23	6 64	8 84	2 756	6 918	3 2	38	1121	1229	1279	1362	1427	1553
Tlow	44.	6											
Thi	8	6											
Deg.s F base 45													
DD req.s:	22	8 62	7 81	5 732	2 889) 2	30	1086	1190	1238	1318	1381	1504
Tlow	4	5											
Thi	8	6											

	Females	Females	Females	Females	Females
	time v	Est ELP,Mate	, Est ELP,Mate,	Est ELP,Mate	Est ELP,Mate,
	Total Gen	Pre-OV,	Pre-OV,	Pre-OV,	Pre-OV,
	OV to 1st moth	OV to 5% OV	OV to 50% OV	OV to 75% O	OV to 95% OV
Deg.s C base 7.0	On older appl	e leaves (assu	me Gen 3+)		
DD req.s:	773	801	847	883	953
Tlow	7				
Thi	30				
Deg.s F base 44.6					
DD req.s:	1391	1441	1524	1589	1715
Tlow	45				
Thi	86				
Deg.s F base 45					
DD req.s:	1347	1395	1475	1538	1661
Tlow	45				
Thi	86				

Oviposition Dds	including Pre-OV	based on Fig. 4
o npoolaon bao	monutating i to o t	i babba bir i igi 4

base 7C	Cohort 1	Cohort 2	Avg
Time to 5% OV	20	35	28
Time to 50% OV:	60	87	74
Time to 75% OV:	92	127	110
Time to 95% OV:	170	190	180
base 45F			
Time to 5% OV	36	63	48
Time to 50% OV:	108	156.6	128
Time to 75% OV:	165.6	228.6	191
Time to 95% OV:	306	342	314

6. Empirical conversion from Tlow of 44.6 to 45 deg. F

	Egg to 50% egg laying		Same Dat	e		
Replicate	DD (44.6)	Date	DD (45)		Percent	
Corvallis OR	1360	07/05/12	2	1311	0.963970588	
San Lois Obispo	1363	04/28/12	2	1323	0.970652971	
Salinas CA	1371	. 05/06/12	2	1328	0.968636032	
Sacramento CA	1367	05/09/12	2	1327	0.970738844	
Average					0.968499609	
	Result: multiply DD req.s by 0.968 to convert base 44.6 to base 45 degree-days					

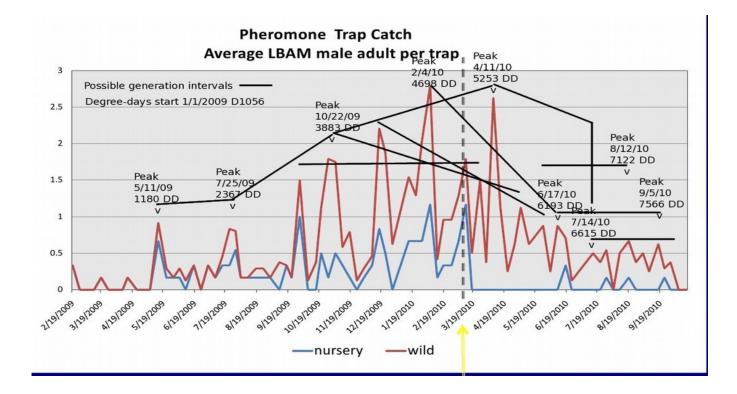
7. Analysis of trapping data from Santa Cruz California 2009-2010

Data from Steve Tjosvold, UC Cal. Extension 3/7/2011

(Gold Rush Nurs., Santa Cruz, CA, nearest wea stations: D1056 (medium), AR172 (warmest), CQ127 (coolest)) http://sfp.ucdavis.edu/events/11conference/tjosvold.pdf

- No longer accessible as of Nov 2019

Peak pheromone trap catch (males) occurred on 7/25/2009, 10/30/2009, 2/4/2010, 3/11/2010, 4/11/2010, and (less obviously) 6/11/2010 Peak bait trap catch occurred on 10/30/2009, 1/12/2010, and 4/11/2010


Peak UV light trap catch (males&females) occurred on 10/22/2009 but not again until 6/17/2010

For analysis use de	g. F, 1362 DD	gen time (Mar-	Jun), 1524 DD g	en time (Jul-F	eb) (error in not u	sing final gen DD of 1318 and 1475 DD ca. 2 days each event)
	Station:	AR172		CQ127		
	Date	Dds > 1/1/10	Dds > 1/1/09	Dds > 1/1/10	Dds > 1/1/09	
no data->	12/08/08					
peak ptrap->	05/11/09		1326		1131	
	06/30/09		2148		1845	
	07/25/09		2641		2274	
peak->	07/30/09		2727		2360	
sm peak →	08/19/09		3125		2721	
sm peak →	08/31/09		3390		2962	
	09/30/09		4028		3523	
peak->	10/04/09		4090		3580	
peak all 3 traps->	10/28/09		4455		3911	
peak ptrap->	12/19/09		4903		4336	
	12/31/09		4972		4403	
peak bait->	01/12/10	118	5090	105	4508	
peak ptrap->	02/04/10	262	5234	248	4651	
sm peak →	02/24/10	416	5388	395	4798	
peak ptrap->	04/11/10	804	5776	758	5161	
sm peak →	05/02/10	1038	6010	950	5353	
sm peak →	05/17/10	1218	6190	1118	5521	
peak ptrap, UV trap	06/17/10	1753	6725	1600	6003	
sm peak →	07/14/10	2180	7152	1985	6388	
sm peak →	08/12/10	2654	7626	2419	6822	
some flight->	09/05/10	3144	8116	2845	7248	
some flight->	10/08/10	3744	8716	3411	7814	

	Station:	D1056 (used	for analysis)	Gen. Time ba	cktracking		Gen. time for	wardtracking		
	Date	Dds > 1/1/10	Dds > 1/1/09	Dds > 1/1/09	Dds > 1/1/09	Dds > 1/1/09	Dds > 1/1/09	Dds > 1/1/09	Dds > 1/1/09	Notes
no data->	12/08/08		-182	-182						
peak ptrap->	05/11/09		1180	^			V			
	06/30/09		1927				"			
	07/25/09		2367				" v			
peak->	07/30/09	(to 8/04/09)	2450		2451		2542	2V		

sm peak →	08/19/09		2813		"	^					"					
sm peak →	08/31/09		3045	304	7"	Ι					u	Ì				
	09/30/09		3572 "	^	"						"	1				
peak->	10/04/09		3627"	1	u			372	9		"	v	\	/		
peak all 3 traps->	10/28/09		3975"			_^	"	^		V		3974	1"	1		
peak ptrap->	12/19/09		4414"				"		"	Ι			"	1		V
	12/31/09		4478"				"		"	Ι			"	1	"	I
peak bait->	01/12/10	93	4571	^			"		"	Ι			"	1	"	I
peak ptrap->	02/04/10	220	4698				"		**	1			**	v	"	I
sm peak →	02/24/10	356	4834			483	31"		**	1		v		5151	"	Started
peak ptrap->	04/11/10	775	5253		u	^		^	**	V	u	1	\	/	"	mating
sm peak →	05/02/10	1021	5499		u					549	9"		**		"	disruption
sm peak →	05/17/10	1204	5682	568	2"						"	v	**		5938	8 ###
peak ptrap, UV trap	06/17/10	1715	6193"	^		_^				V		6196	õ "	v		(reduces trap
sm peak →	07/14/10	2149	6627"						**	Ι				6615		catch; obscures
sm peak →	08/12/10	2644	7122	^					**	V			44	1		peaks)
some flight->	09/05/10	3088	7566							755	5		44	V	1460)
some flight->	10/08/10	3661	8139											8139		

Discussion: Some but not all flight peaks during 2009 were singular rather than bimodal or multimodal, whereas, either because of mating disruption or increasingly overlapping generations, singular flight peaks are difficult to distinguish during 2010. Generation times determined by Dds do assist in explaining potential flight peaks and in showing which peaks are likely not linked by generations. A lack of winter frost kill (station CG127; coldest temps were 12/6-9/2009 at 28-32F and 12/24-25/2009 at 31-33F) may help explain the 2010 overlapping of life stages and generations. Data from Steve Tjosvold, UC Cal. Extension 3/7/2011

8. Estimation of biofix or 1st flight peak from OW populations: Average stage surviving winter is 4th instar larvae (probably actually 5th instar

0.45

due to supernumerary molts occuring during winter time). Assuming 4th instar is at ca. 55% of development for larvae stage on Jan. 1 (nominal biofix);

	Larval & pupa	l dev. (DDs)		Factor for % completion of larval development on Jan 1:			
	Males		Females				
	young apple	old apple	young apple	old apple			
Deg.s C (7.0Tlow)	360	468	420	510			
0.45	162	211	189	230			
pupal Dev	132	132	132	132			
remain larv+pupal	294	343	321	362			
Deg.s F (44.6 Tlow) 748	842	756	918			
0.45	337	379	340	413			
pupal Dev	132	132	132	132			
remain larv+pupal	469	511	472	545			
Deg.s F (45 Tlow)	724						
0.45	326	367	329	400			
pupal Dev	128	128	128	128			
ca. pk flight:							
remain larv+pupal	454	495	457	528			

First peaks spring 2010 Santa Cruz (Fig above): 03/11/10 DD (45F) 450

04/11/10 DD (45F) 775

8b. Approx. biofix/start of first gen. In DDs (F) using March 31 for 1st peak flight, from Zalom #3 above:

		AR172	CQ127	D1056	station:	
	781	642	663		03/31/09 DD (45F)	
average:	723	681	680		03/31/10	
689	693	677	601		03/31/11	
	765	668		NA	03/31/12	
	vg. value 689 DD	er estimates, a	in range of oth	e very much	Discussion: these DD values are	Dise

9. Buergi, L.P., W. J. Roltsch, and N.J.Mills. 2011. Abudance, age structure, and voltinism of light brouwn apple moth populations in California. Environ. Entomol. 40: 1370-1377. Data and results similar to above analysis of Santa Cruz plus San Francisco population data, focused on peak timing of late instar larvae and degree-days to determine voltinism.

Params used (from Gutierrez et al. 2010 after Danthanarayana 1975):

	Celsius	Fahrenh	eit
Tlow	6.	.8	44.24
Thi	31.	.5	88.7
Egg to 50% egg laying	64	6	1162.8

Biofix: most OW larvae pupated by March in these locations and years.

Results: this model for generation time successfully fit the field larval sample data, with 3-4 generations per year in the region. Notes: found gen time took longer during winter months by ca. 115-392 DDC, cited finding by Geier and Briese 1981 that development rate slowed under short-day (ca. 10Hr daylength) than longer day (14hr) daylength, and that dev. Rate also slowed at more temperate latitudes (Geier and Briese 1980).

10. Main DD req.s table from #5-9 above:	Deg. F	Deg. C
Tlow	4	5 7.2
Thi	8	8 31.1
Dds dev Egg	22	8 127
Larvae (male young apple)	62	7 348
Larvae (male old apple)	81	5 453
Larvae (female young apple)	73	2 407
Larvae (female old apple)	88	9 494
Pupae	23	0 128
Pre-OV to 5% egg laying	4	8 27
Pre-OV to 50% OV	12	8 71
Egg to 5% egg laying, young apple leaves	123	8 688
Egg to 50% egg laying, young apple leaves	131	8 732
Egg to 5% egg laying, old apple leaves	139	5 775
Egg to 50% egg laying, old apple leaves	147	5 819

9.5 Current params used by UC IPM (http://cesantacruz.ucanr.edu/files/157930.pdf)

45	Deg. F
88	
230	
680	
230	
50	
1190	"Total DD"

11. Model based on #5-9 above using 495 DD estimated 1st peak flight in pheromone traps, 528 DD 1st female peak flight (subject to change):

	(F)	(C)	
Tlow:	45	7.2	
Thi:	88	31.1	DD (F)
Overwintering/Spring Generation:	DD (F)	DD (C)	Cell ref formula
Peak OW/1st gen. pheromone trap	495	275	"=C316
Peak OW/1st gen. egg-laying:	656	364	"=E316+D341
Peak 2 nd gen. Egg-hatch:	884	491	"=C353+D334
Peak 2 nd gen. larvae	1250	694	"=C354+D337/2
Peak 2 nd gen trap catch:	1894	1052	"=C353+D342
Peak 3 rd gen. Egg-hatch:	2430	1350	"=C354+D343+D334
Peak 3 rd gen. larvae	2875	1597	"=C357+D338/2
Peak 3 rd gen trap catch:	3288	1827	"=C356+D344
Peak 4 th gen. Egg-hatch:	4134	2296	"=C357+D345+D334
Peak 4 th gen. larvae	4578	2543	"=C360+D337/2
Peak 4 th gen trap catch:	4683	2602	"=C359+D344