IPPC Model Analysis Summary – Apr. 2, 2018 vers. 1.1

Old world bollworm (OWBW) (Helicoverpa armigera) Phenology (degree-day) Model

By Len Coop for use at Oregon State University's Integrated Plant Protection Center website http://uspest.org

Developed for APHIS PPQ CAPS program Pest status: high risk of US invasion; polyphagous pest throughout Australia, Africa, India, much of Europe and

Model abbrev: owbw

note significant data used in final model in salmon background note points added to force x-intercept method in yellow Asia especially on cotton, soybean and vegetables; known long-distance migratory behavior

<u>Parameter</u>		<u>Celsius</u>	<u>Fahrenheit</u>	
Lower Threshold:		10.56	51	
Upper Threshold:		38	100.4 (base	d on some survival egg-adult at 35C)
Start Date:	Jan. 1 st			
Calculation type:	single sine	(UC Davis default)		
Region of known use:	Developed for u	se in the continental U.S	S.	
Validation status:	Version 1.1 base	ed on analysis of sources	s listed; emphasis	on regions w/winter diapause
Notes on biology:	Working assum	ption that below ca. 20 d	deg. Lat. (tropics):	no diapause, 25-40 deg. Lat: OW pupae in diapause in soil,
	above 40 deg. L	at.: fail to survive cold (except Mediterran	ean and marine-influence climates can have milder winters),
	but migratory c	olonization can occur.		

UGA0454075

<u>Event</u>	<u>DDs10.56 (C)</u>	<u>DDs51 (F)</u>	<u>notes</u>
First flight (winter diapause; not contin. devel or migrants)	240	432 ← 1	first flight for migrant populations likely to occur later than this;
Peak flight	569	1024	ca. 400 DD (C) in S. Hungary
Approx peak larvae 1 st Gen (peak flight+Pre-OV+Egg+0.5*Larvae)	808	1454	
1 st Generation first flight	845	1521 ← 0	using 1 st flight in spring + avg generation time (Egg to 25% OV)
1 st Generation peak flight	1174	2113	
2 nd Generation peak larvae	1413	2543	
2 nd Generation first flight	1450	2610	
2 nd Generation peak flight	1779	3202	
3 rd Generation first flight	2055	3698	
3 rd Generation peak flight	2384	4290	
4 th Generation first flight	2660	4787	
4 th Generation peak flight	2988	5379	
5 th Generation peak flight	3593	6468	
6 th Generation peak flight	4198	7557	

1. Jallow, M.F.A., M. Matsumura. 2001. Influence of temperature on the rate of development of Helicoverpa armigera (Hubner)(Lepidoptera:Nocturidae).

Appl. Entomol. Zool. 36:427-430.

-Reared on tomato collected from diff hosts in Kumamoto Prefecture, Japan (32.4 Deg North). Photoperiod 12L:12D. Relative Humidity unspecified.

2. Jallow, M.F.A., M. Matsumura, and Y. Suzuki. 2001. Oviposition perference and reproductive performance of Japanese Helicoverpa armigera (Hubner)(Lepidoptera:Nocturidae).

Appl. Entomol. Zool. 36:419-426.

-Studies included Pre-OV time on various hosts

Table 1.	Eggs	Temp. C	1/days	Da	ays										
		10.65	3	0.0033	<mark>300</mark>										
		13.	3	0.0709	14.1		OWBW Eggs								
		16.4	4	0.1010	9.9		0.4500								
		2	C	0.1818	5.5		0.4000	00							
		22.	5	0.2041	4.9		$\begin{array}{c} 0.3500 \\ \hline f(x) = 0.0200x - 0.2113 \\ \hline \end{array}$								
		2	5	0.3333	3		0.3000								
		27.	9	0.3571	2.8	ys	<u>o</u> 0.2500								
		30.	5	0.3846	2.6	eg 0.2000									
		32.	5		2.5		0.1500								
		Slope=b		0.0200			0.1000								
		intercept=a	-	0.2113			0.0000								
	Tlow	X-interc -a/b	1	0.5596			5	10	15	20	25	30	35		
	DD-req	1/slope		49.98					Te	mn C					
	RSQ		0.9714	0.9688											

Larvae	Temp. C	1/days Da	ays	
	11.075	0.0025	400	
	13.3	0.0169	59.1	
	16.4	0.0221	45.3	
	20	0.0377	26.5	
	22.5	0.0465	21.5	0.1000 Larvae
	25	0.0621	16.1	0.0800
	27.9	0.0763	13.1	f(x) = 0.0042x - 0.0437
	30.5	0.0870	11.5	$R^2 = 0.9839$
	32.5		10.9	ଞ୍ 0.0400
	Slope=b	0.0043		0.0200
	intercept=a	-0.0451		0.0000
Tlow	X-interc -a/b	10.5601		10 12 14 16 18 20 22 24 26 28 30
DD-req	1/slope	234.07		Temp. C
	RSQ	0.9886	0.9859	

Pupae	Temp. C	1/days		Days	
	9.484		0.0040		250
	13.3				
	16.4		0.0233		43
	20		0.0415		24.1
	22.5		0.0515		19.4
	25		0.0741		13.5
	27.9		0.0901		11.1
	30.5		0.1064		9.4
	32.5				9
	Slope=b		0.0050		
	intercept=a		-0.0530		
Tlow	X-interc -a/b		10.5608		
DD-req	1/slope		199.21		
	RSQ		0.9650		0.9756

1/days

Pre-OV

Tlow

DD-req

Temp. C

Slope=b

1/slope

RSQ

intercept=a

X-interc -a/b

11.5371

25

Studies with different host plants (Tables 2&3, Jallow, Matsumura & Suzuki 2001)

Days

45

3.045

0.0222

0.3284

0.0227

-0.2402

10.5600

43.97

1.0000

			Pupal D	uratio	n	Pre-OV			
Larval Duration	Days	Тетрс	D	D10.56	Days		DD10.56	Days	DD10.56
Artif. Diet	1	2.2	25	176.2		13.3	192.1	2.68	3 38.7
Eggplant	19	.85	25	286.6	1	14.01	202.3	2.72	2 39.3
Pepper	20	.17	25	291.3	1	14.26	205.9	3.29	9 47.5
Maize	1	4.5	25	209.4	1	14.19	204.9	3.21	46.4
OKRA	14	.76	25	213.1	1	14.13	204.0	3.27	47.2
Tomato	1	6.2	25	233.9	1	13.46	194.4	3.1	44.8
AVERAGE	16	.28	25	235.1		13.9	200.6	3.045	44.0

3. Mironidis, G.K., and M. Savopoulou-Soultani. 2008. Development, survivorship, and reproduction of H. armigera under constant and alternating temperatures Env. Entomol. 37:16-28.

-Studied using populations from cotton fields in N. Greece. Reared on artificial diet at 25C and 16:8 L:D.

Table 1.	Eggs	Temp. C	1/days		Days	
		9.1		0.0050		200
		15		0.0737		13.57
		17.5		0.1515		6.6
		20		0.1953		5.12
		25		0.3021		3.31
		27.5		0.4167		2.4
		30	0.4762			2.1
		32.5		0.4975		2.01
		35				2.04
		Slope=b		0.0230		
		intercept=a		-0.2429		
	Tlow	X-interc -a/b	1	10.5620		
	DD-req	1/slope		43.49		
		RSQ		0.9781		

Larvae	Temp. C	1/days		Days	
	11.61	-	0.0033		300
	15	;	0.0147		68
	17.5	5	0.0366		27.3
	20)	0.0419		23.87
	25	5	0.0644		15.52
	27.5	5	0.0726		13.78
	30)	0.0795		12.58
	32.5	5	0.0977		10.24
	35	5			10.36
	Slope=b		0.0043		
	intercept=a		-0.0458		
Tlow	X-interc -a/b		10.5604		
DD-req	1/slope		230.40		
	RSQ		0.9868		

Pupae	Temp. C	1/days		Days	
	11.84		0.0050		200
	17.5		0.0420		23.81
	20		0.0481		20.8
	25		0.0810		12.35
	27.5		0.0886		11.29
	30		0.1103		9.07
	32.5		0.1159		8.63
	35				8.56
	Slope=b		0.0054		
	intercept=a		-0.0573	_	
Tlow	X-interc -a/b	1	L0.5614		
DD-req	1/slope		184.23		
	RSQ		0.9914		

4. Liu, Z., D. Li, P. Gong, and K. Wu. 2004. Life table studies of the cotton bollworm, H. armigera on different host plants. Environ. Entomol. 33:1570-1576.

Table 1									Table 4		
		Egg			Larvae		Pupae		Adult Female	e Longevity	← assume same as oviposition
Host	Temp. C	Days	DI	010.56	Days	DD10.56	Days	DD10.56	Days	DD10.56	
Cotton		27	3.0	49.3	22.3	2 367	10.1	166	9.79	161	
Corn		27	3.0	49.3	14.0	5 231	9.55	157	10.61	174	
Common Bea	a	27	3.0	49.3	15.2	1 250	9.75	160	12.2	201	
Tomato		27	3.0	49.3	22.7	2 374	9.35	154	10.84	178	
Hot Pepper		27	3.0	49.3	21.0	2 346	9.79	161	12.11	199	
Tobacco		27	3.0	49.3	19.7	7 325	5 10.14	167	7.65	126	
Average				49.3		315.3	3	160.8		173.2	
							_				
Average Cott	ton, Corn, E	Bean only		49.3		282.7	'	161.1		178.6	
							40% of Ovino	sition time -0	$4 \times 1786 -$	71	

Notes:

-in China, 3-5 generations per year
-best hosts for fitness such as survival, devel rate, pupal size, fecundity etc, generally: cotton > corn > bean >> tobacco, tomato, hot pepper
-In China, is a key pest of cotton, rarely found on tobacco and hot pepper
-Serious pest of China, Australia, and India

5. Venette, R.C., E.E. Davis, J. Zaspel, H. Heisler, M. Larson. 2003. Mini Risk Assessment Old World Bollworm, H. armigera.

https://www.aphis.usda.gov/plant_health/plant_pest_info/owb/downloads/mini-risk-assessment-harmigerapra.pdf

-Distribution based on eco-biome matching of US with similar biomes in countries included in global distribution -Range includes tropical, dry, and temperate climates.

-may be most closely assoc. with deserts and xeric shrublands, Mediterranean scrub, temperate broadleaf and mixed forsts, tropical and subtropical moist broadleaf forest.

Figure 2. Predicted distribution of *Helicoverpa armigera* in the continental US. Southern Florida is enlarged for detail.

6. Kriticos, D, N. Ota, W. D. Hutchison, J. Beddow, T. Walsh, W. Tek Tay, D. Borchert, S. Paula-Moraes, C. Czepak, M. Zalucki. 2015. The potential distribution of invading Helicoverpa Armigera in North America: Is it just a matter of time? Plos One 10(7): e0133224.

Index	Parameter	Previous Values	New Value ^a
Temperature	DV0 = lower threshold	11°C	11°C
	DV1 = lower optimum temperature	20°C	20°C
	DV2 = upper optimum temperature	31°C	31°C
	DV3 = upper threshold	37°C	37°C
Moisture	SM0 = lower soil moisture threshold	0.05	0.1
	SM1 = lower optimum soil moisture	0.7	0.7
	SM2 = upper optimum soil moisture	2.0	1.0
	SM3 = upper soil moisture threshold	4.0	2.0
Cold stress	TTCS = temperature threshold	9	-
	TTHS = stress accumulation rate	-0.0003	-
	DTCS = degree day threshold	-	5°C days
	DHCS = stress accumulation rate	-	-0.0005 week ⁻¹
Heat stress	TTHS = temperature threshold	37°C	37°C
	THHS = stress accumulation rate	0.0005 Week ⁻¹	0.001 Week ⁻¹
Dry stress	SMDS = soil moisture threshold	0.1	0.1
	HDS = stress accumulation rate	-0.005 Week ⁻¹	-0.004 Week ⁻¹
Wet Stress	SMWS = soil moisture threshold	2	2
	HWS = stress accumulation rate	0.005 Week ⁻¹	0.005 Week ⁻¹
Diapause Index	DPD0 = Diapause induction daylength	11 h	11 h
	DPT0 = Diapause induction temperature	15°C	10°C
	DPT1 = Diapause termination temperature	16°C	10°C
	DPD = minimum days in diapause	69	0
	DPSW = summer/winter switch	0 (winter)	0 (winter)

arameters were adapted from Zalucki and Furlong [12]. Changed values are indicated in bold.

^a Values without units are dimensionless indices of soil moisture for a 100 mm single bucket model (0 = oven dry, 1 = field capacity).

doi:10.1371/journal.pone.0119618.t001 Climex predicted distrib. In US & part of S. America: A) Ecoclimatic index, B) Annual growth index indicating the potential for population growth:

Notes: Fig A in supplemental material has a much broader potential distribution in US:

Pers commun. With one of the authors: The reason Florida was originally excluded was due to lack of cotton there....the climate is probably not the factor limiting success there.

7. Baker, G.H., C.R. Tann, G.P. Fitt. 2011. A tale of two trapping methods: Helicoverpa spp. In pheromone and light traps in Australian cotton production systems.

Entomol. Research 101:9-23.

-growing season of cotton ca. weeks 18-43 -monitored light and pheromone traps for 11 seasons

Fig. 4:

14

Fig. 4. Long-term average catches of *H. armigera* female and male moths in light traps at ACRI, Narrabri, New South Wales from 1992–93 to 2001–02 (-O-, female; -O-, male).

Extracted fro	m Fig. 4 and	climate data:	Simple Avg D	ds	← - weather	data fro	m http://www.bom.gov.au/clin	nate/data/	30-31S Latitu	ıde	
Date (conver	t to	Cumul %	DD10.56	DD10.56	for station	053030 N	larrabri West Post Office NSW fror	m 1995			
N. Hemis)	Week	Trap Catch	199	5 1997	Avg	Data a	vailable at uspest.org/data/NARR/	ABRI95.txt	and NARRAE	BRI96.txt	
01/01/95		1 0) 1.	7 5.1	3	←		Estimated fe	emale	Modified (Gen Time
01/28/95		4 C) 16.4	4 40.6	29		l	peak catch f	rom Fig. 4	Peak DD I	Pk to Pk
03/07/95		9 2	19	1 137	164		l				
03/24/95	1	1 5	30	242	271 1st catch G1	←	1 st Catch ca. 271 DD				
04/07/95	1	3 10	39	1 342	367		l				
04/21/95	1	5 24	53	3 452	493 diff=wk23-1	L	I				
04/29/95	1	6 40	61	3 534	576		1 st GEN (Maelzer & A 1999)	peak catch 0	G1	576	
05/19/95	1	9 75	87	5 718	797		(weeks 0-20)				
06/02/95	2	1 95	105	9 1054	1057		l				
06/16/95	2	4 5	5 133	2 1284	1308 1 st catch G2	←		peak catch 0	G2	1308	732
06/30/95	2	5 50	1430	0 1524	1477 diff=wk40-23	3=	2 nd GEN (M & Z 1999)				
08/09/95	3	1 5	5 205 ₄	4 2114	2084		(weeks 20-33)	peak catch 0	33	2084	776
08/24/95	3	3 50	226	6 2362	2314		l				
09/13/95	3	6 5	5 256	1 2674	2618		l				
09/27/95	3	8 50	274	9 2848	2799 diff=wk44-		3 rd GEN (M & Z 1999)	peak catch C	G4	2799	715
10/10/95	4	0 5	283	5 2980	2908 1 st catch G3	←	(weeks 33-44)				
10/24/95	4	2 50	294	1 3108	3025		l				
11/07/95	4	4 est5	305	1 3232	3142	←				(assume partia	l gen)
11/14/95	4	5 95	311	4 3265	3190			partial peak	ca. G5	3190	391
								avg Gen Tim	ne Dds		741

First Catch evidence

Fig. 2 (pheromone traps = males) – ca. Weeks 11-13 (equiv March 24-Apr 7)

Fig. 4 (light traps) – ca. Weeks 11-13 (female), weeks 9-11) male

Fig. 6 (light and pheromone traps) – ca. Weeks 10-11

- First mont 3rd week Mar 270 DD; Peak mont last week Apr., 575 DD; AVG den time between beaks/deneration time ca. 740	irst flight 3rd week Mar 270 DD: Pe	k flight last week Apr.,575 DD: AVG g	gen time between peaks/generation time ca. 740 DD
--	-------------------------------------	---------------------------------------	---

	DD10.56	
First flight	270	
Peak flight	575	
Gen time	740	\leftarrow remove from final summary due to lack of assurance that this analysis has low enough error

8. Duffield, S. and M. Dillon. 2005. The emergence and control of overwintering Helicoverpa armigera pupae in sourthern New South Wales. Austral. J. of Entomol.

-OW as pupae in Southern NSW

-Data from caged planted populations (not entirely natural field conditions)

-females emerge before males; presumed due to pre-OV requirement for females

-Cooler climate and later emergence by ca. 2 weeks than reference #7 above

From Fig. 1 (1997 data) % male moth

Austral	N. Hemis	emerg	DD10.56	DDS from same site as above, 1997 DENILIQUIN97.txt NSW Austral sta 74128 note reversed seasons
10/24/97	04/24/97	2	277	
10/29/97	04/29/97	10	336	
11/07/97	05/07/97	50	395	
11/14/97	05/14/97	90	473	
11/29/97	05/29/97	98	636	

From Fig. 2 (1	1998 data)	% male moth			
Austral	N. Hemis	emerg	DD10.56		DDS from same site as above, 1998 DENILIQUIN98.txt NSW Austral sta 74128 note reversed seasons
10/24/98	04/24/98	1	_	306	
11/04/98	05/04/98	10)	393	
11/17/98	05/17/98	50)	511	
11/30/98	05/30/98	90)	687	
12/06/98	06/06/98	98	3	772	
From Fig. 4 (r	nodel from 199	0-2001 data)			
		% male moth	DD10.56		

499 730 896

	N. Hemis	emerg	1997	1998 AVG
10/18/99	04/18/98	2	253	259
10/29/99	04/29/99	10	336	365
11/16/99	05/16/99	50	489	508
12/04/99	06/04/99	90	713	746
12/17/99	06/17/99	98	881	911
Average of th	ne three above	e:	DD10.56	
		First flight	280	
		Peak flight	468	
		End flight	768	

- ----

DDS from same site as above, 1997&98 DENILIQUIN NSW Austral sta 74128 note reversed seasons 256 351

9. Kumar, G. J.. 2013. Monitoring of Insect Pest Populations of Chickpea. M.S. Thesis. ANGR Agric. University, Rajendranagar, Hyderabad India.

1) In Haryana India max activ of the males during 6th to 28th week (Feb 4-July 10 spring / summer) plus a minor peak week s 42-50 (Chickpea) (Sinha and Jain 1992)

2) In Varanasi India moths active from 2nd week Feb to last week of May (ca. weeks 6-19) w/peaks during Mar and Apr in 1989-90 and 1990-91 (Rakesh et al. 1995)

3) In Dhankuta, Nepal max moths trapped in Pheromone traps in Apr, Mar, and May in 1988, 1989, and 1990, respectively (Duwadi et al. 1996)

4) In Uttar Pradesh India, max moth catches Pheromone traps in first half of April, also during Late March.

-In Tamil Nadu 1982-83 peak pheromone and light trap catch during Feb to April and Oct to Dec.

-In Gujarat pheromone trap catch highest from Dec to Apr. (Chari et al. 1985)

-Peak catch from Mar to Apr in N. India, Nov-Dec in S. India, Mar-Apr in E. India (Dent 1985)

5) Uttar Pradesh 1982-85 catches from Mar to Apr in Pheromone traps (Lal et al. 1985)

-In Gujarat continuous trapping 1982-1983 with max males during Oct-Nov both years (Patel et al. 1985)

-In Texas highest spring catches in areas planted with wheat (Slosser et al. 1987)

6) In Nepal w/Pheromone traps in chickpea fields trapped from 1st week Jan to last week Apr., peak from last week Feb to first week Mar (Sah et al. 1988)

-In S. Italy moths trapped from July to Sept w/peak in Aug. (Sannino and Balbini 1989)

7) In Himachal Pradesh 1991 peak catch Mar to May (Dev et al 1991)

-In Pakistan 1991 peak first half of April (Srivastava et al. 1991)

-In Raichur India max activity in light and pheromone traps Oct to Dec with peak during week 50, oviposition peaked same as trapping plus next week after trap peaks (Patil and Kulkarni 1997)

8) In Andhra Pradesh 1998-99 max moths during Weeks 2-5 (Jan and Feb) (Suganthy et al. 2003)

-In ?? India populations low during 49-6th weeks increasing from week 7-13 (Zahid and Shahzad 2007)

9) In Madhya Pradesh India 1983-5 peak activity (presumed larvae) in Feb and Mar both years (Dubey et al. 1993)

10) In Syria 3 peak catches of male moths: mid-Mar weeks 10-11, April weeks 13-15, and early June weeks 21-22 (Tahhan and Hariri 1982)

11) Results from Thesis on H armigera: -peak moth catch week 6; 4 peak catches recorded: week 48, 52, 4, and 6. Major peak coincided with podding stage of chickpea

	exclude as not temperate	e / more warm tropic	cal/subtropical	where pops ap	pear to develop	year-round;	also possibly r	nigrant population f	trapped	
Location (ref above)	First Flight N	loted	First Peak Fl	t Noted	End Flight N	oted	Notes/other data	ı	
Weather s	tation used for Dds	Date	DD10.50	Date	DD10.50	Date	DD10.50			
1. Haryana	, India	02/05/91	122			07/10/91	2672	2		
421	01 Patiala, PU, IN (76.45E,3	80.36N)								
2. Varanas	i, India	02/10/90	230	03/20/90	655	05/27/90	2103	3		
VIBN	Varanasi / Babatpur, IN (8	82.86E,25.45N)								
Dhankut	a, Nepal	03/07/88	324	04/15/88	630					
444	77 Dhankuta, DH, NP (87.35	5E,26.98N)								
4. Uttar Pra	adesh (Kanpur) India			04/07/90	937					
(Station VII	_K) Lucknow / Amausi, IN (80	0.89E,26.76N)								
5. Uttar Pra	adesh (Kanpur) India	03/04/83	418							
VILK	Lucknow / Amausi, IN (80	0.89E,26.76N)								
6. Bharatpu	ır Nepal	01/07/87	31	02/28/87	366			Immigrants? No lo	ocality specified?	
VNPK	Pokhara Airport, GA, NP	(84.00E,28.22N)								
7. Solan Hl	India			03/25/91	214	05/25/91	885	5		
IHIMACHA	9 Solan, Himachal Pradesh	n, IN (77.10E,30.93	N)							
8. Andhra F	Pradesh-Anantapur India			01/20/98	291			S. India – tropical	no diapause	
432	37 Pbo Anantapur, IN (77.63	8E,14.58N)								
9. Madhya	Pradesh India			01/10/84	65			Larvae in Feb and	d Mar	
VABP	Bhopal / Bairagarh, IN (7	7.34E,23.29N)								
10. Damas	cus Syria			03/14/81	167		Peak flights:	04/05/81	251 06/06/	/81 975
OSDI	Damascus Int. Airport, S	Y (36.52E,33.41N)						difference:	724 possible ge	eneration time
11. Hydera	bad, India									
VOHY	Hyderabad Airport, India	(78.47E,17.45N)		02/07/12	530					
			1 st Flight		Peak Flt 1st Ge	n		Gen time		
Selected a	verages (exclude yellow shad	ded as probably too	273.5		688			724 ←	drop from final table du	ue to being highe
								exp	pected, lack original re	ference.

Comments/Interpretations:

-In tropical regions, flight occurs throughout winter; generally showing lack of diapause (typical that OW diapause weakens as populations are not under selection pressure there) -In more temperate regions, flight usually not until Mar-April, more or less supporting results from Australia (300 DD for first flight (3rd week Mar), 620 first peak (last week Apr.) -Closer examination of original source documents (if available) could improve this analysis

10. USDA APHIS PPQ Plant Health Pest Info – Helicoverpa armigera. 2014. Old World Bollworm Fact Sheet. https://www.aphis.usda.gov/plant_health/plant_pest_info/owb/downloads/owb-factsheet.pdf

-OW pupae in soil; moths emerge in May to June depending on latitude.

-2 to 5 generations typical in subtropical and temperate regions; up to 11 under optimal conditions.

-cited Jallow and Twine 1978 for DD requirements; from Twine 475 DD above 11C for E-L-P development

Quoted: Helicoverpa armigera has a facultative pupal diapause, which is induced by short day lengths (11 to 14 hours per day) and low temperatures (15 to 23°C; 59 to 73°F)

experienced as a larva (CABI, 2007). A summer diapause, in which pupae enter a state of arrested development during prolonged hot, dry conditions, has been

recorded in the Sudan (Hackett and Gatehouse, 1982) and Burkina Faso (Nibouche, 1998).

-moths disperse 10km for non-migratory flights and hundreds of KM (up to 250 km) for migratory flights when host quality declines.

-Risk map emphasizes high risk in states incl. E. Texas, LA, MS, AL, GA, SC, N. FL,

-Med risk in states like VA, NC, TN, AR, OK, W. TX, S. CA, S. AZ, S. NM., S. KS

-Low risk in all N. States and PNW states, CO, most of UT

-Risk map considers host availability as well as climate

11. Noor-UI-Ane, M, A. Mirhosseini, et al. 2017. Temperature-dependent development of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and its larval parasitoid, Habrobracon hebetor (Say) (Hymenoptera: Braconidae): implications for species interactions. Bull Entomol Res 24:1-10.

-completed devel at 37.5C but not at 40C

-Estimated 11.6 and 513.6 DD for E-L-P development, but no access to full paper to review methodology used

From Fig. 3.	Rough estimates of	flight usin	g pheromone tra	aps (study f	ound light traps	s not as re	liable for migrant f	flight deteo	ction)		Diff G1-G2
	1 st catch (ca. 5%)	25	5% catch	G	1 50% catch	l	End catch ca 95%	G	2 50% catch		50% catch
	DD10	.5	DD1	.0.5	DD1	L0.5	DD10	0.5	DD	10.5	
A. Sarvar/Somogy	06/22/12	553	07/02/12	677	07/08/12	761	07/20/12	913	08/19/12	1314	553
Data from degreedays.net f	or station LHSK (last 36	6 months a	veraged; not true	to 2012) for	Siofok, Hungary	(18.05E,4	6.92N)				
B. Kozarmisleny / Pogany	06/10/12	412	06/25/12	571	07/10/12	759	08/06/12	1109	08/23/12	1313	554
Data from degreedays.net f	or station LHPP (last 36	6 months a	vg) Pecs / Pogan	y, HU (18.24	1E,45.99N)						

Notes:

-Migrant populations; apparently no successful OW here (45-46N Latitude)

-So most estimates (other studies) for native populations, these for more temperate climates such as US above ca. 40 Deg. Latitude -migrant adults less predictable than local pop.s; first catch later (presumably are F1 or F2 from pop.s to the South) -Generation times seem about right but dont use in table below since they are probably a mixture of local and migrants

13. TheBeatSheet.Com.AU – Australian Helicoverpa trapping program

https://thebeatsheet.com.au/helicoverpa-pheromone-traps/

Pheromone data from website, DD calcs from degreedays.net for:

2016 - 3 Locations in Australia (Narrabri NSW 95734, St George QL, 94517 [Inglestone], Surat QL 94521 [Condamine])

2017 - 3 Locations in Australia (Kingsthorpe IKINGSTH3, Tamworth Airport YSTW, [for NW Breeza], and Trangie Res. Sta. #95710)

H. armigera moth flight in pheromone traps 2017 selected locations Australia

Same data using reverse season dates on x-axis (similar to N. Hemisphere)

Notes:

Presumed these are all local (not migrant) populations which overwinter in pupal diapause in the soil: latitude is well within expected range for continental climates (25-40 deg. Lat.).

				Peak or ca.	
		1 st ca	tch (ca. 5%)	50% catch	End catch ca 95%
Loc/Lat	Year	DD10).5	DD10.5	DD10.5
Condamine 27 S	20	016	230	500	910
Narrabri 30 S	20	016	270	525	
Inglestone 28 S	20	016	280	470	800
Kingsthorpe 27.5 S	20	017	230	550	820
Breeza 31 S	20	017	245	600	
Trangie 32 S	20	017	190	620	
Average			241	544	843

-Reasonably good data but traps may have been sometimes missed beginning and end of flight

-Could add 2015 to the analysis, consider Brookstead and Kingaroy locations, but not as good as 16-17 data

14. Behere, G.T., W.T. Tay, D.A. Russell, D.G. Heckel, B.R. Appleton, K.R. Kranthi, and P. Batterham. 2007. Mitochondrial DNA analysis of field populations of H. armigera and of its Relationship to H. zea. BMC Evolutionary Biology 7:117-127.

- DNA sequencing supports "single species status" of H. armigera: same genetically across Africa, Asia, and Australia (due to long-distance migratory capacity).

- Very close genetically, believe from this evidence to have diverged from H. zea around 1.5 million years ago.

	exclude from a	verage (treat a	s outlier) in yell	low					
15. Summary Table for DD req.s (10.56	C lower thresho	ld temperatur	e) for OWBW:			DD 10.56C			
Study	Jallow, M	J, M &S	Mironidis et a	Liu et al.		Average	S.D.	C.V	
Year	2001	. 2001	2008	2004					
Loc.	Japan	Japan	N. Greece	China					
Egg	50.0		43.5	49.3		48		4.1	8.7
Larvae	234.1	235.1	230.4	282.7		246		28.9	11.8
Pupae	199.2	200.6	184.2	161.1		195		19.8	10.2
E+L+P	483.3	435.7	458.1	493.1		488		28.9	5.9
Pre-OV	44.0	44.0	24.8			44		13.6	30.8
40% OV			74.7	71.5		73		2.3	3.2
Full OV			186.8	178.6		183		5.8	3.2
Generation time (E+L+P+F	reOV+40%OV)		558	589	Compute by addition \rightarrow	605			

16. Estimates of first and peak 1st Gen flight, and generation time (DD10.56C between apparent peak flights)

					From Summ			
Source:	Baker et al	Kumar	Duffield	Keszthelyi	beatsheet.co Table above			
Year	201	L various	2005	2015	2016-17	DD 10.56C		
Loc.	NSW Austra	l. India, Nepal	S. NSW Au	Hungary	NSW/Queens Lab various	Average	S.D. C.V.	Notes:
Latitude	30 S.	Var. 15-32N	35 S.	46 N.	27-31 S.			
First flight	270) 273.5	280		241	266	17.2	6.5 Avg 266 but use more
Peak flight	57	5 688	468		544	569	91.3	16.0 conservative 240 for
First flight (migration areas higher latitudes)				400		400		first emergence
Peak flight (migration areas higher lats.)				760		760		
End Flight			768		843	806	53.3	6.6
Gen. Time					605	6 05		

F.....

17. Estimates of lethal temps for life stages

	Celsius C Fahrenheit F	:
Upper lethal temp	39 102	2 ← From Kritocos et al. 2015 plus a margin of error
Lower lethal temp	-4 25	5 ← Calibrated from CLIMEX map using DDRP model

18. Proposed model parameters for Helicoverpa armiger	a, old world	bollworm (OV	VBW)	
Parameter		<u>Celsius C</u>	Fahrenheit F	
Lower developmental threshold		10.56	51	L
Upper developmental threshold		38	100)
Start Date: J	an 1			
Calculation type: s	ingle sine	(UC Davis def	ault)	
Region of known use: C	eveloped fo	r use in the c	ontinental U.S	S.
Validation status: V	ersion 2 bas	sed on analysi	is sources lis	sted; emphasis only on regions w/successful overwintering
Life Stage DD durations		DDC	DDE	-
Faa		48	86	-
-99 Larvae		246	442	- 2
Punae		195	350	
Equato Adult		488	878	
Pre-OV+40% OV		117	211	
Generation Time (Egg to 40% OV)		605	1080	
		005	1009	
Model Events		DDC	DDF	
First flight (winter diapause; not contin. devel. as in the t	ropics)	240	432	2 First flight for migrant populations likely to occur later than this;
Peak flight		569	1024	4 ca. 400 DDC in S. Hungary
Approx peak larvae 1 st Gen (peak flight+Pre-OV+Egg+0.6	*Larvae)	808	1454	4
1 st generation first flight		845	1521	L
1 st generation peak flight		1174	2113	3
2 nd generation peak larvae		1413	2543	3
2 rd generation first flight		1450	2610)
2 rd generation peak flight		1779	3202	2
3 rd generation first flight		2055	3698	3
3 rd generation peak flight		2384	4290)
4 th generation first flight		2660	4787	7
4 th generation peak flight		2988	5379	
5 th generation peak flight		3593	6468	3
6 th generation peak flight		4198	7557	7
Phenology Stage Ranges E	Begin DDC	End DDC	Begin DDF	End DDF
OW pupae in soil	0	239	0	430
OW generation flight	240	844	432	2 1520
1 st generation flight	845	1449	1521	L 2609
2 nd generation flight	1450	2054	2610	3697
3 rd generation flight	2055	2659	3698	3 4786
4 th generation flight	2660	3263	4787	7 5875
5 th generation flight	3264	3868	5876	6 6964
6 th generation flight	3869	4473	6965	5 8053
7 th generation flight	4474	5078	8054	1 9141

Climate Suitability Parameters	DDC	DDF
Heat Stress Threshold for DDRP model	39	102 Estimate based on failure to develop at 38C
Heat Stress Units preventing long term establishment	150	270 for lethal longer-term threshold
Heat Stress Units preventing short term establishment	250	450
Chill Stress Threshold for DDRP	-4	25 Assume some thermal protection outdoors
Chill Stress Units preventing overwintering	200	360 based on calibration from CLIMEX model
Chill Stress Units restricting migration	700	1260 based on calibration and reports of regular trapping in Norway
OW Stage		pupae in diapause in soil (subtropical and temperate climates)
Photoperiod sensitivity		ca. 11 hr daylength and 10C to trigger pupal diapause (Kriticos et al. 2015)