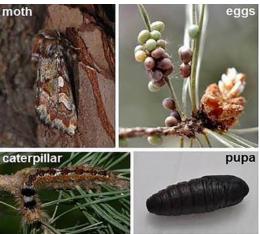
Phenology/Degree-Day and Climate Suitability Model Analysis – Vers. 2, June 12, 2020 Analysis by Len Coop and Brittany Barker for USPEST.ORG at Oregon State University, Oregon IPM Center Pine Tree Lappet Moth Dendrolimus pini (Linnaeus) [Lepidoptera: La


Hosts: *Pinus* spp. esp. *P. sylvestris*; may also attack some spp. of cedar, fir, spruce, juniper Damage: consumes tree needles

[Lepidoptera: Lasiocampidae]

Goal: Develop a phenology model and temperature-based climate suitability model using available literature and weather data analysis

Adult *Dendrolimus pini* (L) Hardin and Suazo (2012)

Skrzecz et al. (2020) Forest Ecol Manag: 117697

Larvae feeding on pine https://commons.wikimedia.org/wiki/File:Dendrolimus_pini_larva.jpg

Thresholds, degree-days, events and climate suitability params used in Pine Tree Lappet Moth model:

Parameter abbr.	Description	degF	degC	DDF	DDC
eggLDT	egg lower dev threshold	45.0	7.2	-	-
eggUDT	egg upper dev threshold	86.0	30.0	-	-
larvaeLDT	larvae lower dev threshold	45.0	7.2	-	-
larvaeUDT	larvae upper dev threshold	86.0	30.0	-	-
pupaeLDT	pupae lower dev threshold	45.0	7.2	-	-
pupaeUDT	pupae upper dev threshold	86.0	30.0	-	-
adultLDT	adult lower develpmental threshold	45.0	7.2	-	-
adultUDT	adult upper dev threshold	86.0	30.0	-	-
eggDD	duration of egg stage in DDs	-	-	326	181
larvaeDD	duration of larva stage in DDs	-	-	1852	1029
pupaeDD	duration of pupa stage in DDs	-	-	664	369
adultDD	duration of teneral adult stage in DDs	-	-	198	110
OWIarvaeDD	DDs until mid-larval peak	-	-	373	207
eggEventDD	DDs when egg-hatch begins	-	-	324	180
larvaeEventDD	DDs until mid-larval deveopment	-	-	1037	576
pupaeEventDD	DDs until pupae complete development (first adult emerg.)	-	-	657	365
adultEventDD	DDs until first oviposition	-	-	126	70
coldstress_threshold	cold stress threshold	5.0	-15	-	-
coldstress_units_max1	cold stress degree day limit when most individuals die	-	-	684	380
coldstress_units_max2	cold stress degree day limit when all individuals die	-	-	1800	1000
heatstress_threshold	heat stress threshold	86.0	30.0	-	-
heatstress_units_max1	heat stress degree day limit when most individuals die	-	-	342	190
heatstress_units_max2	heat stress degree day limit when all individuals die	-	-	495	275

distro_mean	average DDs to OW larvae first pupation	222
distro_var	variation in DDs to OW larvae first pupation	5000
xdist1	minimum DDs (°C) to OW larvae first pupation	0
xdist2	maximum DDs (°C) to OW larvae first pupation	441
distro_shape	shape of the distribution	normal

(Note points introduced to regression analysis to force x-intercept highlighted yellow) (Note significant data used in final model highlighted in Salmon color)

1. NAPPFAST Model Documentation Sept 2012

Sources and Data:

Tlow 3C Tupper 30C (optim. Temp 20C) ← this Tlow is dubious based on studies available below See "Climate suitability model" section below for risk model (Source 14)

2. Hardin, J.A. and A. Suazo. 2012. New pest response guidelines: Dendrolimus pine moths. USDA-APHIS-PPQ-CPHST.

Available at https://www.aphis.usda.gov/import_export/plants/manuals/emergency/downloads/dendrolimus.pdf

Larvae begin diapause beginning 3rd instar; 4th or 5th instars are OW stage (Heitland 2002)

Larval photoperiodic threshold is 12 hrs daylength or less for 38 days; diapause inhibited at more than 17 hrs. (Geispits etal 1972)

Larvae pupate after 7 or 8 instars

Pupation starts in late spring (May-June and will last 4-5 weeks (Melis 1940)

2 gens/yr in italy otherwise 1-3 years per gen.

Mated females live 7-10 days; unmated 17-20 days; adults do not feed

If 1 gen/yr pupal devel 15 days vs 22 days w/1 gen/2 yr

If 1 gen/yr females dont fly vs do fly w/1 gen/2 yr

Egg devel opt 24C and 80-85% humid, range 14 to 31 C (Kojima 1933)

Temps below 8.5 and above 33.5C result in 100% mortality

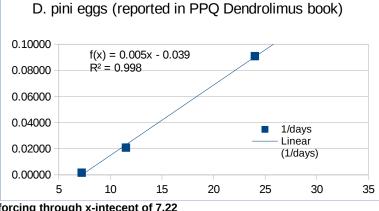
Eggs: 10 days at 31.5C to 48 days at 11.5C; 11 days at 24C and 80% RH

Larvae: temp-devel results not mentioned for larvae

Pupae: normal pupation still occurs at 7C; 95 days at 12 C to 14 days at 32C, 25 days at 24C (Kojima 1933, Winokur 1991)

In native range in Europe and Asia, flight normally starts in June and July (Lesniak 1976, Varga 1966)

Flight is conditional: if OW as 4/5th instars, flight mainly in July (univoltine), if OW as 2/3rd instars (winter 1) then as 5/6th instars (winter 2), flight May-June (2 yrs/gen)

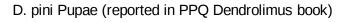

Pg 94: flight normally between June and August

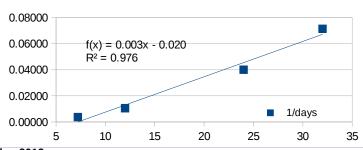
See "Climate Suitability Model" below for the risk map that they present

Estimated Adult Female Pre-OV + ca. 40% OV from above (very rough estimate): 8 days at 70 F or 21 C = 8 * (21-7.22) =

110 DD (Tlow=7.22C)

Eggs Temp C		1/days		days	
	7.22	,	0.00167	, ,	600
	11.5		0.02083		48
	24		0.09091		11
	31.5				10
Slope (b)			0.00538		
intercept (a	a)		-0.03885		
R2			0.99819		
1/slope			185.8	(DD req.)	
-a/B			7.22	(x-intercept)	




result: incomplete data set; deleted point at supra-optimal temp. (31.5C) allowed easy forcing through x-intecept of 7.22 this resulting value of 186 DD is essentially same as source #3 below

X-intercept regression analyses for eggs based on above reports and 7.22 Tlow

X-intercept regression analyses for pupae based on above reports and 7.22 Tlow

Pupae				
Temp C	1/days		days	
7.2	2	0.00375		<mark>267</mark>
1	2	0.01053		95
2	4	0.04000		25
3	2	0.07143		14
Slope (b)		0.00271		
intercept (a)		-0.01959		
R2		0.97631		
1/slope		369	(DD req.)	
-a/B		7.22	(x-intercept)	1

result: incomplete data set; fairly good fit; 369 DD best fits with emergence reported Sweden 2012

3. Kojima 1934 and Schwerdtfeger 1963, 1977 - graph of egg development

Original references: Kojima, T., 1934. Studien zur Ökologie des Kiefernspinners, Dendrolimus pini L. Z. angew. Ent. 20:329-353. Schwerdtfeger 1963 Ökologie der Tire - Parey, Hamburg, 572 pp

Eggs	Focu	is on Prokhono	v 1908: [Fig 2.18 (1)]
Temp C	1/da	ys day	/S
	10	0.00010	10000.000
	14	0.02700	37.037
	18	0.05700	17.544
	22	0.08300	12.048
	26	0.11500	8.696
	30	0.14000	7.143
slope (b)		0.00707	
intercept (a)		-0.07101	
R2=		0.9993	
1/slope =		141	
-intercept= -b/A		10.0	X-inter

Focus on Sch	nwerdtfeger 1	963: [Fig 2.18	(3)]
Temp C	1/days	days	
7.28	0.001	2000	
10	0.014	71	
14	0.039	26	
18	0.060	17	
22	0.081	12	
26	0.104	10	
slope (b)	0.0055		
intercept (a)	-0.0399		
R2=	0.9993		
1/slope =	181	(DD req.)	
-b/A	7.22	(x-intercept)	

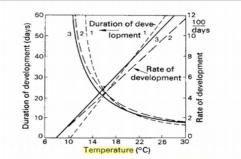
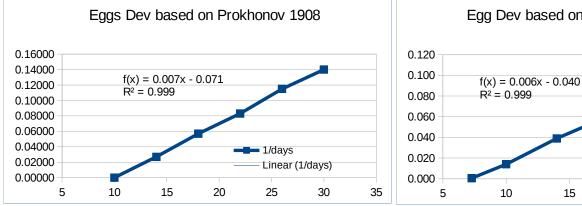
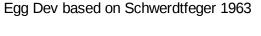




Fig. 2.18 Length and rate of development of eggs of Dendrolimus pini (L.) in dependence on temperature (after Schwerdtfeger, 1977): 1 - according to Prokhonov, 1908, 2-- according to Kojima, 1934, 3- according to Schwerdtfeger, 1963

Based on these works, could use for eggs: Tlow=10 C, 141 Dds, or 7.22 C, 181 Dds (use the latter)

15

1/days

25

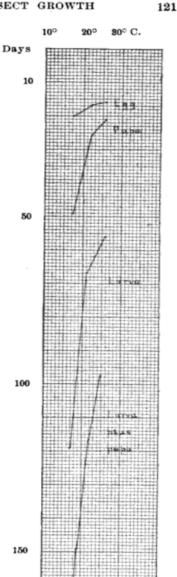
30

20

4. CPHST Pest Datasheet Sept 2012

Egg Incub 14-25 days, mortal at or above 32C OW when daylength 12 hours – larvae move to forest floor to OW in forest litter within 1 m of host tree. Diapause induced by temps below 5C Diapause terminated when litter temps reach 3C. In lab 9hr or less daylight induce diapause for 20-35 days in all instars Diapause (both sensitivity and response) induced for all larval instars 1962 Ann Rev Entomol

5. Regener and Ratzeburg (from N Hampshire Agric Exp Sta. Sci Contrib. 1910. Pg. 121)

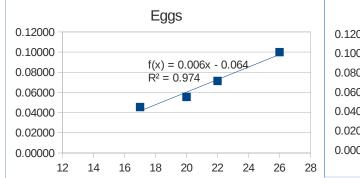

Fig. 13. Temperature development graph of eggs, larvae, pupae, and larvae plus pupae:

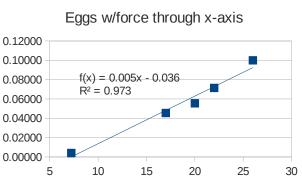
April, '10] SANDERSON: TEMPERATURE AND INSECT GROWTH

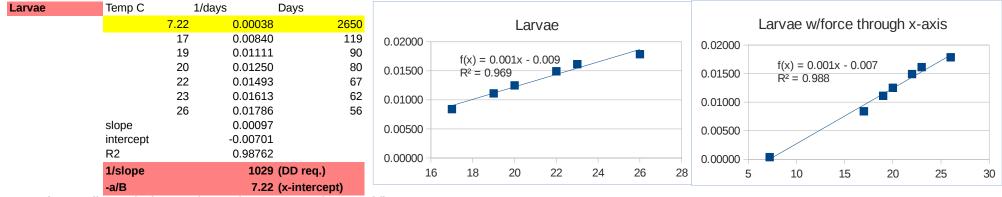
normal conditions, record of which we have, have been maintained. In exact work to determine the effect of temperature the moisture conditions should be constant, as with many species the moisture influence is as much or more important than that of temperature in determining the optimum for development.

Similar observations on the time of hatching of the eggs of Malacosoma americana, the time of emergence of the caterpillars of the brown-tail moth from their winter nests, the hatching of eggs of the gypsy moth, and the pupal stage of Samia cecropia, Papilio asterias and Epargyreus tityrus, have been or are now being made, but cannot be summarized at present.

Other data is at hand, however, showing the same facts. Thus Kerschbaumer (15) has given data from which the curve for the life cycle of Culex pipiens as influenced by temperature has been plotted (figure 12), and Regener (21) and Ratzeburg (20) have shown the same for the different stages of *Dendrolimus* pini, shown in figure 13. One of the most careful studies of the relation of both temperature and moisture to the development of an insect is a recent one of Hennings (9) with Tomicus typographus Linn. Hennings reared all stages and secured the complete life cycle of this species at four

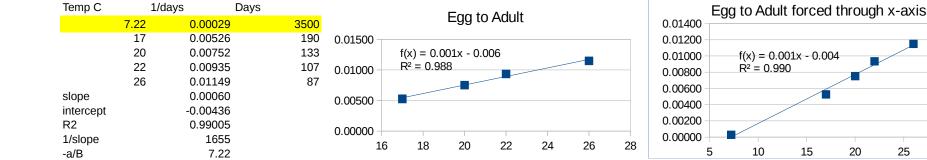

From above figure (with forcing through proposed Tlow of 7.22 C): X-intercept regression analyses:


22


14

10

Egg 1/days Temp C Days 7.22 0.00395 253 17 0.04545 20 0.05556 18 22 0.07143 26 0.10000 slope 0.00492 intercept -0.03555 R2 0.97280 1/slope 203 -a/B 7.22 Notes: similar to earlier examined studies; use those results



Notes: best avail. Data for larvae; Tlower of 7.22 seems to be a good fit.

Pupae	Temp C	1/day	/s Days		
		7.22 17	0.00267 0.02041	<mark>375</mark> 49	Pupae Pupae w/force through x-axis
		19 20	0.02500 0.02857	40 35	$0.05000 \qquad f(x) = 0.003x - 0.034 \qquad 0.05000 \qquad 0.050000 \qquad 0.050000 \qquad 0.05000 \qquad 0.050000 \qquad 0.050000 \qquad 0.05000000000 \qquad 0.0500000 \qquad 0.050000000000$
		22 26	0.03846 0.04762	26 21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	slope intercept	20	0.00240		
	R2 1/slope		0.96076		0.02000 0.01000 0.01000
	-a/B		7.22		0.00000 0.000000

Egg through Pupae

30

5.1. Summary from all highlighted data above:					Sum	Regression	
		Egg	Larvae	Pupae	Egg to Adult	Egg to Adult	Pre-OV+40% OV
	DDs	181	1029	369	1579	1655	110
	Tlow	7.22	7.22	7.22	7.22	7.22	7.22

From these results: estimate Tlow: 7.22 C, egg to adult devel: 1579 DD, generation time: 1689 DD

6. Meshkova, V. 2004. Dependency of outbreaks distribution from insects-defoliators' seasonal development

(Ukraine). Proceedings: Ecology, Survey and Management of Forest Insects GTR-NE-311: 52-60.

"the interval between dates of air temperature transition over 5 and 10C with D. pini....it is during this period that larvae initiate feeding after hibernation. ...transition below 5 and 0 in autumn is also reliable. This is during the period when winter diapause of D. pini caterpillers begins.

Interpretation: including photoperiod (threshold 12:12 L:D) would be a good way to terminate and then initiate diapause in spring and fall; but finding an appropriate Tlow that tends to correspond with non-diapause activity could work well also. Thus 7.22C may fit these analyses of spring and fall activity. Two D. pini gens per year occur in the South, only one gen. In the North of Ukraine In outbreak years, first gen. Cocoons were formed before June 17 in 88.2% of cases; majority of first gen. Larvae complete feeding before the solstice (June 21) Late devel. Larvae may go through a summer diapause and then will coincide with larvae from the summer generation.

7. Pest Alert (UK Forestry Commission) – Pine Tree Lappet Moth (2009) – possibly established near Inverness, Scotland

Adult moths emerge between late June and mid August and live for 9-10 days.

Eggs hatch after 16-25 days during August and Sept.

Larvae begin feeding on edges of pine needles. Autumn feeding lasts for 2-3 moults until the first frost, when larvae migrate down the tree to OW beneath the litter at the litter/mineral soil interface, usually very close to the tree trunk.

This devel. Stage ends in early spring, when soil temps reach 4-5C. The larvae then return to the pine canopy and feed on old needles. Pupae devel occurs in May-June and lasts 4-5 weeks.

8. Grodner, J. and R. Zander. 2010. Sex pheromone of the pine tree lappet moth *D. pini* and its use in attarctant based monitoring system. Pestycydy/Pesticides 1-4:43-49

D. pini males were trapped 5 July to 13 August 2010. In the Slawa Slaska Forest District (Zielona Gora) Poland Nearest German data found: 3376 D7/06/10 580 approx first flight (according to data) Muncheberg (E of Berlin) 08/14/10 1091 approx end of flight (accord. To data) (modify Jun and July with data from Leszno, Poland; Climate diffs between Berlin and Poznan Poland are small) wea file: SLAWA210.txt NOTES: Corresponds pretty well with the model at least for beginning of flight

9. Priesner, E., H. Bogenschutz, D.W. Reed et al. 1984. Identification and field evaluation of a sex pheromone of the European Pine Moth. Z Naturforsch C J Biosci. 39:1192-1195

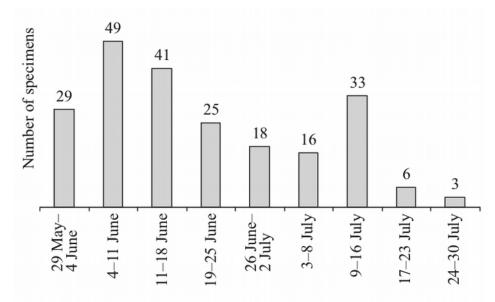
D.pini flight se Seewiesen (SW of Munich) Germany: approx % flight:	eason usually begins in c 06/25/82	entral Europe ir 06/29/82 3.8	n early July – b 07/06/82 19.1	eginning of 198 07/13/82 37.4	33 flight seaso 07/20/82 22.9	n was apparen 07/27/82 12.2	tly missed, bu 08/03/82 1.5	t the mid-July peak w 08/17/82 0	as cove
sta. Numbers 3379,3385		0.0	10.1	01.4	22.5	12.2	1.0	Ŭ	
Best Match →	1982 SEEWIES1 Ge	ermany	Date	DDs					
	Station code 3379		06/25/82		oprox first fligh	it (model and d	ata)		
	wea file:	_	07/18/82			hatch (model)	,		
	SEEWIES182.txt		07/26/82	987 a	oprox peak flig	ht (model)			
			07/17/82			ht (accord. To	data)		
		_	08/29/82		oprox end of fli	-			
			08/14/82		•	ight (accord. To	o data)		
seems a poor match →	1982 SEEWIES2 Ge	rmany	Date	DDs					
(leave out of	Station code 3385	innany	07/04/82		oprox first fligh	it (model)			
average below)	in Munich		07/28/82			hatch (model)			
, , , , , , , , , , , , , , , , , , ,	at Nymphenburg		08/08/82		oprox peak flig	. ,			
	wea file:		07/17/82			ht (accord. To	data)		
	SEEWIES282.txt		08/14/82			ight (accord. To	-		
Breisach (W. of Freiburg, S.	07/04/83	07/12/83	07/19/83	07/26/83	08/02/83	08/09/83	08/16/83		
(w of Freiburg, s of Strasbourg) (station codes 1443,1447,1451	Germany	19.6	39.2	28.3	9.3	1	2.6		
	1983 BREISACH1 G	ermany	Date	DDs					
	Station code 1443	-	06/13/83	574 a	oprox first fligh	it (model)			
	wea file:		07/08/83	866 a	oprox first egg	hatch (model)			
			07/16/83	987 a	oprox peak flig	ht (model)			
	BREISACH183.txt		07/18/83	1032 a	oprox peak flig	ht (accord. To	data)		
			08/10/83	1379 a	oprox end of fli	ight (model)			
			08/18/83	1483 a	oprox end of fli	ight (accord. To	o data)		
	1983 BREISACH2 G	ermany	Date	DDs					
	Station code 1447		06/16/83	-	oprox first fligh	it (model)			
	wea file:		07/11/83		oprox first eggl	. ,			
			07/18/83		oprox peak flig				
	BREISACH283.txt		07/16/83			ht (accord. To	data)		
			08/15/83		oprox end of fli				
			08/18/83		oprox end of fli	• • •			

Average DDs for Events based on flight data from 8 & 9 above:

574 approx first flight (accord. To data) 973 approx peak flight (accord. To data) 1372 approx end of flight (accord. To data)

Interpretation: The first flight for 1982 matches well with reported data (ca 574 DD; ca. Week of June 22-29)

The first flight for 1983 was not monitored but could have been in range of model prediction; ca. Week of June 10-17)


Peak flight for 1982 matched well (ca 862 DD data vs 987 DD model, ca. 7/17/82 data vs 7/26/82 model)

Peak flight for 1983 matched well (ca 7/16-18/83 for both weather station locations.)

End of flight was underpredicted by two weeks for 1982 data, nearly the same date for 1983 data.

These results appear to reflect overwintering not as ready-to-pupate prepupae (as with #10 and #11 below), but as mid-to late instar larvae that will further feed and pass through one or more molts before pupating in the spring. Thus, these results will be used to represent all but the most northern/coldest regions of this insects distribution.

10. Ostrauskas, H. and P. Ivinskis. 2011. Moths caught in pheromone traps during search for *Dendrolimus pini* and *D. sibiricus* (Lepidoptera: Lasiocampidae) in Lithuania. Acta Zool. Lithuanica 21:238-243.

Figure 1. Number of *Dendrolimus pini* moths caught by light trap of Jalas model in Šarkiškė (Švenčionys district) during 1995 (no-one specimen of this species was trapped by light trap before and after indicated dates).

1995 Berlin	data in Fig. 1 – moths	caught	by light traps in Sarkiske 1995						
Climate average									
1-2 deg C warmer avg. Tmax and ca same Tmin for months of Mar-July									
vs. Vilnius Lithuania (data adjuste	d for climate differences))							
SARKISK95.txt	Date	DDs	DDs (not adjusted for climate diffs Berlin vs. Lithuania)						
SARKNA95.txt (not adj.)	06/15/95	334	359 approx first flight (accord. To data)						
	07/12/95	621	649 approx peak flight (accord. To data)						
	07/30/95	861	893 approx end of flight (accord. To data)						

NOTES: this report indicates flight can occur earlier than model predicts by ca. 200-300 Dds; This pattern essentially shows that larvae have completed feeding and development by winter and only need to complete the pupal stage in the spring

Revise above analysis 4/29/20 using degreed	ays.net data from nearest weat	ther stations and using recent year data (2017-2019):
weather station names and codes:	#1: Lyntupy VI 26645	#2: Vilnius, LI EYVI

weather station names and codes:		#	#1: Lyntupy VI 26645			2: Vilnius, Ll				
			Lyntupy			Vilnius				
		2017	2018	2019	2017	2018	2019	Average S.D		
Event	Date	C	DDs							
ca. 1 st flight	06/15/95	295	502	490	340	586	541	459	116	
ca. peak flight	07/12/95	521	753	756	589	856	829	717	134	
ca. end flight	07/30/95	688	1001	941	774	1113	1029	924	162	
	12/31/95	1204	1632	1503	1336	1813	1657	1524	224	
Results: As expe	Results: As expected from planet warming, the recent data Dds are higher than, but within range as compared to data from the year 1995.									
• · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		41						

Again, this represents a population for Northern/colder regions that overwinter as prepupae ready to pupate as soon as temperatures warm in the spring

11. Björkman, C., A. Lindelöw, K. Eklund et al. 2013. A rare event - an isolated outbreak of the pine tree lappet moth in Stockholm archipelago (Sweden). Ent. Tidskr. 134:1-6.

Female lays 15-350 eggs on branches and stems in July. Eggs hatch after 2-3 weeks. Larvae develop through 6 instars and may be completed after 1 or 2 Hibernations. In Oct half-grown larvae hibernate in soil. Post 2nd-hibern. Larvae will pupate in May or early June. In southern Sweden the larvae develop into adults already in the second summer and emerge in July.

2012 STCKHLM Sweden	Date	DDs event
	07/05/12	400 approx first flight (accord. To data)
	09/12/12	1073 approx end of flight (accord. To data)
	09/18/12	1108 numerous small larvae present (accord. To data)
	07/02/12	370 approx first flight (model – colder regions)
	09/01/12	992 Approx. end of flight (model - colder regions)
	10/09/12	1174 larvae seek OW hibernacula (model)
2012 SVENSKA Sweden	07/05/12	262 approx first flight (accord. To data)
	09/12/12	924 approx end of flight (accord. To data)
	09/18/12	954 numerous small larvae present (accord. To data)
	07/16/12	364 approx first flight (model – colder regions)
	09/27/12	992 Approx. end of flight (model - colder regions)
	NA	1174 larvae seek OW hibernacula (model)
NOTES I'LL 1. L'HARDEL ST	states the second constraints and	

NOTES: like in Lithuania, Sweden is a Northern/cold site that may have 3 yrs/generation and OW as prepupae

Average DDs for Events based on 10 & 11 above:	Note: these cases seem to support a 2-3 yr/generation model whereby mature larvae/prepupae OW		
	367 approx first flight (accord. To data)		
	667 approx peak flight (simple avg of first and end of flight)		
	967 approx end of flight (accord. To data)		

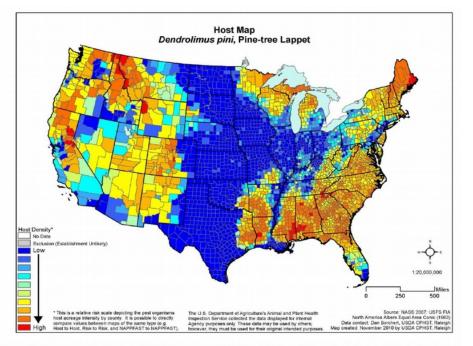
Summary of Phenology Model for *Dendrolimus pini* (Pine Tree Lappet Moth):

Start Date: January 1 st Calc Method: Single Sine Tlower: Tupper:	<u>Deg. C</u> 7.22 30	Deg. F 45 86
Primary Events	DD C	DD F
OW late instar Larvae-Adult Emerge	574	1034 (est. based on 20% larval+pupal dev.)
Egg	181	326
Larvae	1029	1852
Pupae	369	664
Egg to Adult	1579	2842
Pre-OV+40% OV	110	198 (from #2 above)
Generation Time	1689	3040
Events Table		
In northern/colder regions: first adult flight from late instar OW larvae	367	661
1st Gen. Adult Emerg. (most regions)	574	1034
1st Eggs Hatch from spring adult egglaying (most regions)	866	1558
Approx. peak adult flight (most regions; end of flight colder regions)	973	1752
Early-mid larval instars seek hibernacula (if after Oct 1)	1174	2114
Approx. end of adult flight (except colder regions)	1372	2470
Mid-late larval instars seek hibernacula (if after Oct 1)	1483	2669
2nd Gen. Adult Emerg (only in warmest regions)	2263	4074
1st Eggs Hatch from 2nd Gen. adult egglaying (if any)	2555	4598

Climate Suitability Model

12. Ray, D., Peace, A., Moore, R. et al. 2016. Improved prediction of the climate-driven outbreaks of *Dendrolimus pini* in *Pinus sylvestris* forests. Forestry. 89:230-244.

- Used published data of damaging outbreaks plus historical climate data from Germany to build a relationship between climate and outbreaks, and develop a prediction model


- Methods used a PC analysis and decision-tree data mining

In Scotland, more detailed analysis w/ probabalistic climate change projections showed an increasing risk of outbreaks through the 21st century

13. Molet. 2012. CPHS pest datasheet for Dendrolimus pini. USDA-APHIS-PPQ-CPHST.

- The known distribution suggsts that the insect may occur in 2 biomes in the U.S.: (1) temperate confierous forests; and 2) temperate broadleaf and mixed forests

- Both biomes account for approx. 47% of the area of the U.S. (see map below)

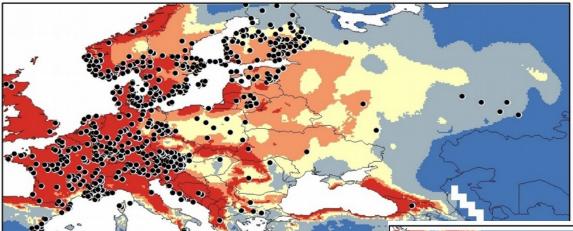

Figure 3. Host map for *D. pini* within the continental United States. Values from low to high indicate increased risk based on host availability. Map courtesy of USDA-APHIS-PPQ-CPHST. Check www.nappfast.org for the most recent map updates.

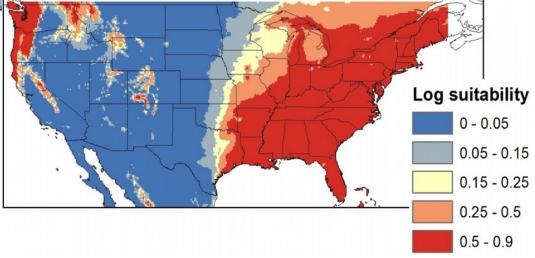
14. NAPPFAST. Risk models found via a "NAPPFAST Dendrolimus pini" search and in Hardin and Suazo (2012) (Source 1)

- Parameters used for model are unclear - could only find the below image

- They conclude that the risk of establishment is greatest in coniferous forests in hardiness zones 4-7 inc. in the southern Appalachian mountain range,

the northeast, midwest (Minnesota, Michigan, Wisconsin, North Dakota), and the northwest regions of the United States and Alaska




15. Lesniak, A. 1976. Climatic and meteorological conditions of the pine moth (*Dendrolimus pini* L.) outbreaks. Ecologia Polska 24:515-547.

- The study reported climatic and meteorological conditions in 6 of the most important centers of outbreaks in Poland
- Areas with the most dangerous outbreaks have average annual temps of 7.8C; weaker outbreak centers were 6.9 and 7.2C
- Frydrychewicz (1934) indicated 100% mortality of the first larval instar at temps >30C
- Outbreaks occur in areas where isotherms of July oscillate at minimum around 18C (this supports a values of 20C as optimal for the species)
- The optimum for development in respect to isotherms of the coldest month (January) is close to the -2C isotherm
- Below the -3.5C isotherm outbreaks are lower in intensity
- Outbreaks are lower in areas where the number of frost days (max temp <0C) exceeds 50 days
- The most severe outbreaks are in the driest areas of Poland, where the average total precip of the warm half of the year is < 350 mm
- They conclude that high temperatures and low humidity are ideal conditions for the species in Poland

16. Maxent model (this study)

- Used locality records from GBIF and the literature to conduct a correlative niche model analysis (Maxent)
- As described in the white paper, the records were subsampled to reduce geographic sampling bias, resulting in 600 records
- Methods included 50 replicates, with a random 80% of localities used to train the model and 20% reserved for testing using the AUC statistic
- Input climate data were the first 2 principal components of Bioclim variables 1-19 (https://www.climond.org/BioclimData.aspx)
- Other settings were default

17. CLIMEX model (this study)

- The species is semi-voltine in northern parts of Europe, but CLIMEX analyses are based on a single year, so it considers an area to be unsuitable if a full gen. is not completed in a year

- Moore et al. (2017) reported that moths overwinter twice as larvae in Scotland (2 year life cycle), similar to Bjorkman et al. 2013 (Source 11)

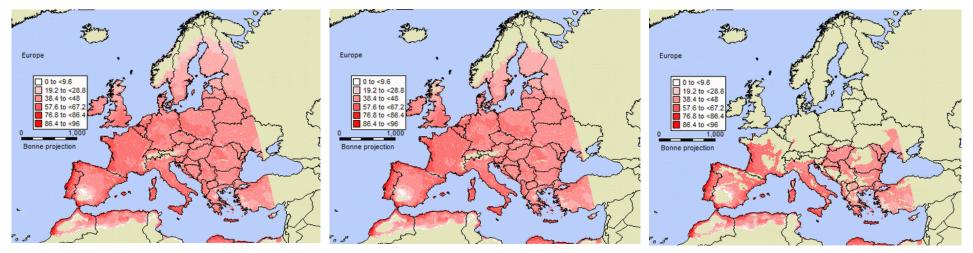
Moore, R., Cottrel, J., Hara, S., Ray, D. 2017. Pine-tree lappet moth (Dendrolimus pini) in Scotland: Discovery, timber

movement controls and assessment of risk in Pinus sylvestris forests. Scottish Forestry. 71:34-43.

- Therefore the species likely overwinters a second time as a late larval instar (pre-pupa)

- The generation time parameter (PDD) in CLIMEX was set to 515, which is equal to 50% of the larvaeDD (i.e. 50% of 1029DD)

- So El only represents the ability for the moth to persist at a location - i.e. OWlarvae can make it to the second OWlarvae stage for the year

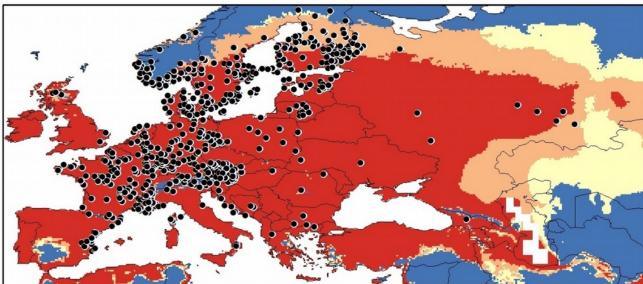

- The resulting map of EI in Europe is very consistent with locality records for the species - localities in Scandinavia (see Source 16 map) were not excluded, whereas they were excluded when a higher PDD was used

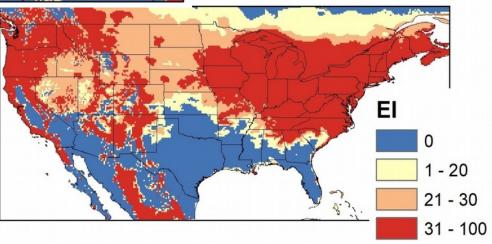
- The heat stress parameters (TTHS and THHS [rate]) were adjusted so that areas of exclusion in US SW generally matched NAPPFAST model (Maxent also predict low suitability there)

- The cold stress parameter (TTCS) value of -15C was chosen because one of the most northerly locatility records for the species (near Kuusamo, Finland) has

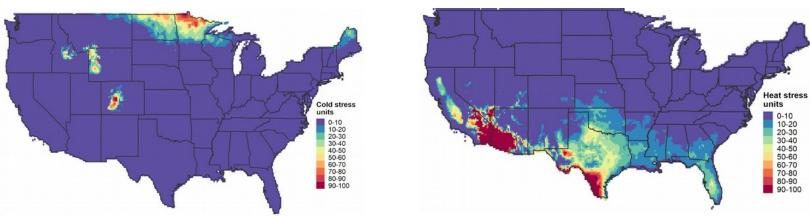
an average low-temp of -18C, and using this value resulted in the inclusion of the majority of localities in Scandinavia

PDD = 515 (50% of larvaeDD) PDD = 654 (OWlarvaeDD + adultDD + eggDD) PDD = 1689 (Full generation)



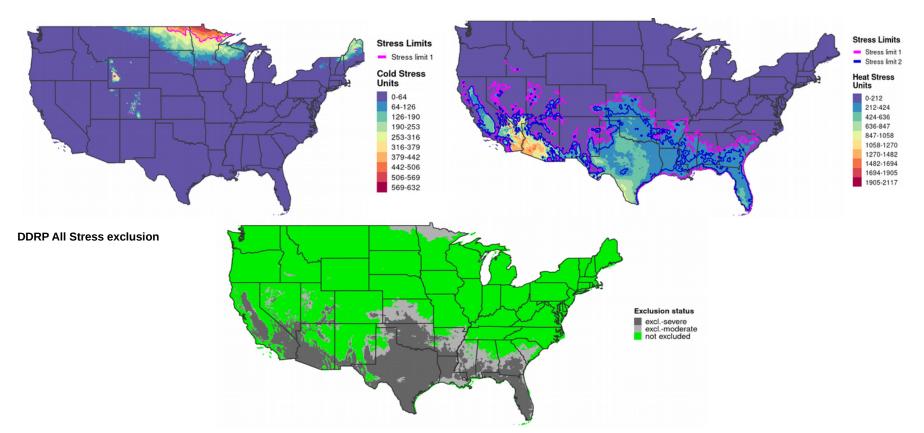

Final CLIMEX parameters

Moisture Inc	lex					
SM0	SM1	SM2	SM3			
	0.1	0.3	1.7	2.5		
Temperature	e Index					
DV0	DV1	DV2	DV3			
	7.2	13	23	30		
Cold Stress						
TTCS	THCS	DTCS	DHCS	TTCSA	THCSA	
	-15	-0.001	0	0	0	0
Heat Stress						
TTHS	THHS	DTHS	DHHS			
	31	0.01	0	0		
Dry Stress						
SMDS	HDS					
	0.1	-0.01				
Wet Stress						


SMWS	HWS			
	2.5	0.0003		
Day-degree	e accumulation	n above DV0		
DV0	DV3	MTS		
	7.2	30	7	
Day-degree	e accumulation	n above DVCS		
DVCS	*DV4	MTS		
	-10	100	7	
Day-degree				
DVHS	*DV4	MTS		
	31	100	7	
Degree-days per Generation				
PDD				
	515			

CLIMEX Ecoclimatic Index - Europe vs. North America

CLIMEX Heat Stress (CONUS)



18. DDRP climate suitability model

- Developed primarily based on CLIMEX model results- using daily downscaled 1961-1990 normals to allow CLIMEX calibration

- limit2 for severe cold stress may need to be fine-tuned; setting a value was difficult because according to CLIMEX the climate only becomes unsuitable in Canada

DDRP Cold Stress	<u>Value</u>	<u>Units</u>	DDRP Heat Stress	<u>Value</u>	<u>Units</u>
cold stress threshold	-15	С	heat stress threshold	30	С
limit 1 (mod. cold stress)	380	DDC	limit 1 (mod. heat stress)	190	DDC
limit 2 (sev. cold stress)	1000	DDC	limit 2 (sev. heat stress)	275	DDC

