IPPC Model Analysis Summary – June 27, 2017; updates Dec. 17, 2018 vers. 1.1

By Len Coop for use at Oregon State University's Integrated Plant Protection Center website: http://uspest.org Developed for APHIS PPQ CAPS and CPHST

Asian Longhorned Beetle Phenology (degree-day) Model Model based on numerous sources outlined below

Anoplophora glabripennis (Motschulsky)

note significant data used in final model in salmon color note points added to force x-intercept method in yellow

Asian Longhorned Beetle Model Par	ameters: Fahı	renheit Celsiu	IS
Lower threshold:		50	10
Upper threshold:		95	35
Start Date:	January 1 st		
Calculation Method:	single sine		
Region of Known use:	Developed using	data and model	s from sources including China, Italy, US, England, Finland.
Validation status:	Based solely on a	nalysis of sour	ces below including lab and field data; with some cross-checks. More validation needed.

Events and degree-days used in Asian longhorned beetle m	odel:	
Stage	<u>DDs50 (F)</u>	DDs10 (C)
Egg	432	240
Instars 1-8 (univoltine climates)	3888	2160
Instars 1-10 (semivoltine climates)	4680	2600
Pupae	468	260
Teneral adult (post-pupae, pre-exit)	224	124
Immature "chewing" adult (post-pupae, use to estimate 1 st flight)	238	132
Egg to Egg w/8 instars (min gen. time: univoltine climates)	5249	2916
Egg to Egg w/10 instars (min gen. time: semivoltine climates)	6041	3356

Adult emergence (based on overwintering final stage larvae ready to pupate):

o/		
<u>% emerg.</u>	<u>DDs50 (F)</u>	DDs10 (C)
1	795	442
10	992	551
25	1173	652
50	1593	885
75	2162	1201
95	2735	1519
99	3003	1668

% emer	gence (Ra	nges) (Fahrenheit only)	<u>DDs50 (F)</u>	<u>DDs50 (F)</u>
Start	<u>End</u>		<u>Start</u>	End
	0	0.9	0	794
	1	9.9	795	991
	10	24.9	992	1172
	25	49.9	1173	1592
	50	74.9	1593	2161
	75	94.9	2162	2734
	95	98.9	2735	3002

99 100	3003	>2963
Final DD model: (start date Jan 1; single sine Dds; Tlower=50F (1	0C), Tupper=95F	= (35C)
	<u>DDs50 (F)</u>	<u>DDs10 (C)</u>
OW larvae begin pupation	104	58
1% Adult emergence	795	442
10% Adult emergence, 1 st egg-laying	992	551
25% Adult emergence	1173	652
1 st Egg hatch	1424	791
50% Adult emergence	1593	885
75% Adult emergence	2162	1201
1 st 5 th instar larvae	2500	1389
95% Adult emergence	2735	1519
99% Adult emergence	3003	1668
1st 8th instar larvae (could be univoltine if reached by Oct)	4110	2283

Sources of Analysis:

1 Smith, M.T., P.C. Tobin, J. Bancroft, G. Li, and R. Gao. 2004. Dispersal and Spatiotemporal dynamics of asian longhorned beetle (Coleoptera: Cerambycidae) in China. Environ. Entomol. 33:435-442.

- data from Gansu Province of N. Central China 1999 & 2000

- in China, 50% emergence occurred after 950 DDC10 (base Temp 10 Celsius)
- fitted a simple model to % emergence (tested by Faccoli et al 2014 and Trotter and Keena 2016 below).

Approx results from Fig. 1:

<u>Date</u>	<u>DD10(C)</u>	<u>DDs50(F)</u>	<u>% emerg</u>	
06/08/99	450	810	2	
06/28/99	700	1260	20	
07/12/99	850	1530	38	approx peak capture at 800-900 DD
07/17/99	950	1710	50	
07/21/99	1050	1890	60	
08/14/99	1225	2205	80	
08/22/99	1430	2574	90	
09/28/99	1700	3060	98	

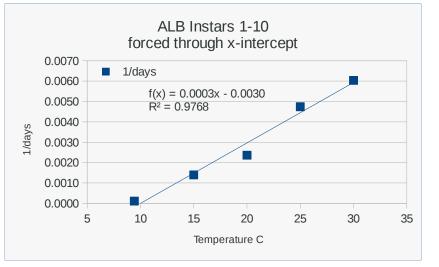
2 Zhao and Naliaki 1999. (As cited in ref. 1 and 3 above and below; not directly accessed)

- in China, 90% emerg. occurred by 7/23/1995, 7/22/1996, and 7/22/1997 (Zhao & Naliaki 1999) with a DD accum. of 1450 DDs by mid-July (Tlow=10C, start Jan 1) <u>Date</u>
<u>DD10 (C)</u>
<u>% emerg</u>
07/22/96
<u>1450</u>
90

3 Keena, M.A. and P.M. Moore. 2010. Effects of temperature on Anoplophora glabripennis (Col.: Cerambycidae) larvae and pupae. Environ. Entomol. 39:1323-1335.

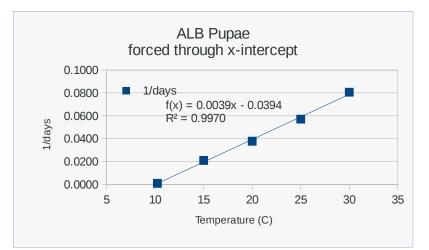
Table 1 (IL population)	Temp Celsius	Da	ay Devel. Time	e: L	eave out	
<u>Stage</u>	<u>10</u>	<u>15</u>	<u>20</u>	<u>25</u> 2	<u>:5yr2</u>	<u>30</u>
	1	15.7	8.5	5.3	4.5	4.1
	2	33.6	12.8	7.6	7.4	5.5
	3	97.5	17	9.9	10.6	7.8

4	40.4	24.8	15.6	15.3	12
5	56.4	29.2	19	19.4	14.9
6	111.1	44.6	23	24.3	20.7
7	127.4	74.3	28	37.3	22.5
8	98.6	107.1	33.3	46.2	23.8
9	104.6	57.5	31.1	40.1	24.7
10	31	47.2	38	54.4	29.7
11	56		32.2	59.4	26.2
12	165		32.3	26.1	26.9
13	53		44.3	23.3	26.8
14	55		43.3	22.3	30
Instars 1-4	187.2	63.1	38.4	37.8	29.4
Instars 5-10	529.1	359.9	172.4	221.7	136.3
Instars 11-14	329	0	152.1	131.1	109.9
Instars 1-8	580.7	318.3	141.7	165	111.3
Larval Totals	1045.3	423	362.9	390.6	275.6
pupa	47.4	26.4	17.5	17.8	12.4
adults	703.9	409	358.3	245.4	299.9


	<u>days</u>	<u>TempC</u>	<u>1/days</u>
Instars 1-8	1000	10.41	0.0010
	580.7	15	0.0017
	318.3	20	0.0031
	141.7	25	0.0071
	111.3	30	0.0090
		r2	0.9441
		slope	0.0004
		intercept	-0.0043
	X-intercept	-a/B	10.0004
	DDReq.	1/slope	2301.1461

Instars 1-10

<u>days</u>	<u>TempC</u>	<u>1</u>	<u>./days</u>
9000	9.42	232	0.0001
716.3	8	15	0.0014
423	8	20	0.0024
210.8	3	25	0.0047
165.7	,	30	0.0060
	r2		0.9768
	slope		0.0003
	intercept		-0.0030
X-intercept	-a/B		10.0000
DDReq.	1/slope		3373.5778


Instar 8 only			
<u>days</u>	<u>TempC</u>	<u>1/days</u>	
300	9.548	3 C	0.0033
98.6	15	5 0	0.0101
107.1	20) (.0093
107.1	25	5 0	.0093
23.8	30) (.0420
	r2	C	.6091
	slope	C	.0015
	intercept	-0	0.0150
X-intercept	-a/B	10	.0005
DDReg.	1/slope	668	8.0362

Instars :	1-4			
<u>days</u>		<u>TempC</u>		<u>1/days</u>
	500	9.7	313	0.0020
-	187.2		15	0.0053
	63.1		20	0.0158
	38.4		25	0.0260
	29.4		30	0.0340
		r2		0.9766
		slope		0.0017
		intercept		-0.0167
X-interce	ept	-a/B		10.0001
DDReq.		1/slope		597.4017

Pupae

<u>days</u>	<u>TempC</u>	1	<u>./days</u>
900	10.2	328	0.0011
47.4		15	0.0211
26.4	Ļ	20	0.0379
17.5		25	0.0571
12.4	ļ	30	0.0806
	r2		0.9970
	slope		0.0039
	intercept		-0.0394
X-intercept	-a/B		10.0000
DDReq.	1/slope		253.8625

26

28

30

32

- Larvae survived short periods at temps > 30C; some instars molted at 35C; given

Thermal insulation of larvae; Tupper may be ca. 36-38

-Posit hypothesis that 7-8 instars required for univoltinism, 10+ for 2, 3, etc gen/yr

-Larvae found to need to weigh at least 500 mg to pupate

-Larvae at 25 C and especialy 30 C tended to need chilling (20 C or lower??) before pupation

-Most larvae pupated w/o molting or after a single molt following chilling

-cited supercooling point at -25.8 C from Roden et al. 2008; therefore northern (cold) limits

may be due to lack of heat units (e.g. Finland pops may take 4 yr/generation)

-in Florida suggest that chilling requirement would not be met

-Extended warm/hot temps may be limiting in South; suggest 2-4 wk above 35C to kill larvae;

I would conservatively increase this upper lethal temp to 40 C

4 Keena, M. 2006. Effects of temperature on Anoplophora glabripennis (Col.: Cerambycidae) adult survival, reproduction, and egg hatch. Environ. Entomol. 35:912-921. -populations from Chicago, IL and Queens, NY reared at constant temps using artificial diet

Thresholds for life history params (celsius):

	, parano (conorat	<i>.</i>						
longevity		<u>Fecun. (IL)</u>	Fecun. (<u>(NY)</u> [Pre-OV	Egg hatch	<u>1</u>	
Tupper	39	3	35	34	3	30	32	
Tlower	-3	1	11	14	-	10	10	
Optimum	18	2	24	23				
Adult longevity in Days:	7	8 Max at 18C		56 /	At 30 C			Pre-Oviposition
	4	0 At 3 C		0/	At -2 and 40	OC		forced through x-intercept
								0.0700
	<u>days</u>	<u>TempC</u>	<u>1/days</u>					$0.0600 \qquad f(x) = 0.0041x - 0.0411 \\ f(x) = 0.0002 \\ f(x) = 0.0002 \\ f(x) = 0.0002 \\ f(x) = 0.0002 \\ f(x) = 0.00041x - 0.00411 \\ f(x) = 0.00041x - 0.0041x \\ f(x) = 0.00041x \\ f(x) $
Pre-Oviposition	28	3 1	13 0).0035				$R^2 = 0.8893$
(time to 1 st egg-laying)	32.	9 1	15 0).0304			S	0.0400
	23.	6 2	20 0	0.0424			1/days	0.0300
	16.	9 2	25 0	0.0592			1/(0.0200
	1	5 3	30	((removed)			0.0100
		r2	0).8893				0.0000
		slope	0	0.0041				12 14 16 18 20 22 24 2
		intercept	-0	0.0411				Temperature C
	X-intercept	-a/B	10	0.0022				lemperature C
	DDReq.	1/slope	243	8.5256		L		

Table 3.	<u>days</u> <u>Tem</u>	<u>pC 1</u>	/days										
Egg Development	354	10	0.0028			Egg Development							
	54.4	15	0.0184				1		ced through x-intercept				
	25	20	0.0400										
	15.0	25	0.0667				0.0800					/	
	13.3	30) = 0.0043 = 0.9866	3x - 0.042	26		
r2			0.9866				0.0600	K-	= 0.9800				
	slope		0.0043	× 0.0100									
	inter	cept	-0.0426			1/days	0.0400						
	X-intercept -a/B		10.0007			1/(0.0200						
	DDReq. 1/slo	ope	234.5842				0.0200						
							0.0000						
Tlower for eggs – evidence	that it is somewhat h	nigher than :	10C				5	10	15	20	25	30	35
-upper threshold for eggs s	omewhere between 3	30 and 35 C	; set at 34 C				C C	10				50	50
Accounting for thermal insu	Accounting for thermal insulation in egg pits 34C "=93.2F								lempe	rature (C)			

5 Faccoli, M., R. Favaro, M.T. Smith, and J. Wu. 2014. Life history of the Asian longhorn beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) in southern Europe. Agric. and For. Entomol. 17:188-196.
 Model tested was from Smith et al 2004; DDs were simple AVG method Tlower=10C
 -Italy study was beginning after a suspected 5-year establishment in the area.

-Italy study w/newly cut logs stored under natural near-field conditions 2010-2012.

From Fig. 3. Approx. avg emergence w/Cumul. DdsC (actual; not predicted by Smith model) in Cornuda Italy 2010-2012

% emerg.	<u>DDs 2010</u>	<u>DDs 2011</u>	<u>DDs 2012</u>	DDs Average
1	450	400	500	450
10	650	525	670	615
25	725	580	770	692
50	820	685	870	792
75	860	850	925	878
95	1150	1250	1100	1167
99	1260	1350	1250	1287
				~ F

^---- Final emergence less than other studies: due to using cut logs?

- Main emergence period was end of June to July

- Mean longevity of adults was 30 days (sexes not signif. different) held in cages w/o mating at 22C

- Max longevity of females (from Fig. 4) was 60 days at 22C held in cages without mating

-in Italy study, 50% emerg between 931 and 989 DD over 3 years (2010-2012)

Fig. 5. ca. 65% OW as larvae in xylem; 5% larvae in phloem, 5% eggs

- My assessment: emergence may have ended early relative to other works due to methodology of using cut logs rather than allowing larvae to develop in living trees. this assessment could be tested by comparing adult size/weights: the Italian beetles would be smaller if development was cut short

6 Straw, N.A., C. Tilbury, N.J. Fielding, D.T. Williams, and T. Cull. 2015. Timing and duration of the life cycle of Asian longhorn beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) In southern England: Agric. For. Entomol. 17:400-411.

-S. England studied infested trees felled as part of an eradication programme; 366 larvae recovered

-results indicated 1 to 2 gen/year; OW as eggs or mid-instar larvae; analysis by Trotter and Keena (below) suggest semivoltine in England.

- OW as eggs produce 1st and 2nd instars by June/July; no adults emerged yet (so 1 gen/2 years=semivoltine)

- OW as larvae produce adults August/Sept (probably also be semi-voltine if eggs deposited Sept or later)

- used same Smith (2004) model 800-900 DD range for estimation of peak emergence; not directly monitored

7 Trotter, R.T., and M. Keena. 2016. A variable-instar climate-driven individual beetle-based phenology model of the invasive asian longhorned beetle (Coleoptera: Cerambycidae). Environ. Entomol. 45:1360-1370 Environmental Entomology, 2016, Vol. 45, No. 6

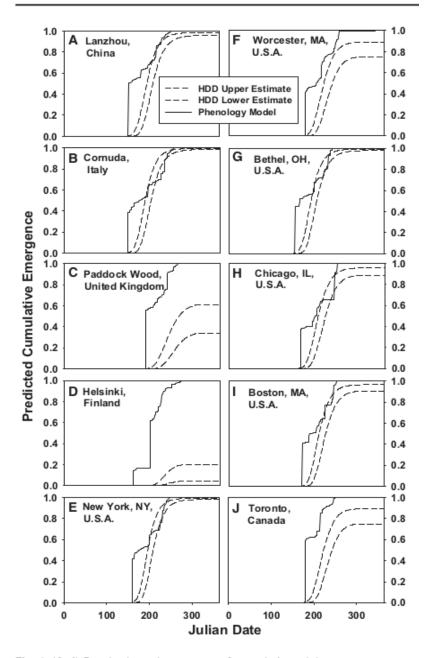


Fig. 4. (A–J) Panels show the patterns of cumulative adult emergence over the growing access for participant at 10 locations known to have reproduc

ing populations of the Asian longhorned beetle. The dotted lines denote the upper and lower confidence bounds calculated using the degree day model described by Smith et al. (2004). The solid lines represent the predicted cumulative adult emergence based on the described phenology model. Note the abrupt initiation of emergence that is likely driven by a lack of variation in the simulated system.

7a. Summary of selected params from Tables 1&2 (modified values):

<u>Stage</u>	<u>Tlower</u>	Tupper	<u>DDs C</u>	-	notes
Egg		12	34	248	
Instars 1-8		11.0	30	1899	Tupper for instar 1 listed as 40C based on Keena and Moore 2010
Instars 1-10		10.9	30	2565	
Pupae		9.8	30	263	
Imm. Adult I		-4	30	124	sclerotizing adult or teneral adult
Imm. Adult II				132	Emerging (chewing adult)

-gleaned data from all above sources; not as useful as would be expected (e.g. Fig. 4 used Julian date on x-axis and compared w/Smith model not actual data) -for most stages used upper development threshold (Tupper) of 30C

-Tlow varied between 8.7 and 13C for immature stages

-Tended to verify/validate Smith DD model for 1st emergence; but in cooler climates 50% and 100% emergence occur much earlier than Smith.

-Tended to verity/validate Smith model at least for New York, Ohio, and Chicago, but 25% and 50% emergence always earlier than Smith

-But some of this fast emergence attributed to simulation model design deficiencies

-supported fact that populations can be univoltine in warmer climates, 1 gen/2 or 3 yr in cool climates, and 1 gen/4+ years in cold climates such as Helsinki, Finland -may be best to try to estimate life stage params from orig sources (Keena 2006 and Keena and Moore 2010)

7b. Degree-Day analysis based on Fig. 4. Run a recent range of years for dates of %emergence to estimate avg DD values Revised using Single Sine Dds on July 19 2017

	A) N	ew York NY	,	Predicted	SimpAVG	KJFK					
	<u>Julia</u>	n Date D	ate	<u>%emerg</u>	Mean DD10C	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
Adj. using	>	168	06/17/00	1	476	546	483	516	386	442	484
Ref. 10 below	>	186	07/05/00	25	733	834	727	791	631	684	729
		200	07/19/00	50	962	1083	958	1023	884	883	941
		220	08/08/00	75	1272	1409	1294	1321	1168	1161	1277
		240	08/28/00	90	1553	1686	1568	1612	1437	1426	1590
		258	09/15/00	99	1786	1917	1785	1840	1661	1659	1853
	B) C	hicago IL		Predicted	SimpAVG	KMDW					
	<u>Julia</u>	<u>n Date</u> <u>D</u>	ate	<u>%emerg</u>	Mean DD10C	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
		154	06/03/00	1	342	385	262	472	282	330	322
		165	06/14/00	25	459	499	382	600	381	435	457
		202	07/21/00	50	996	1055	930	1238	912	928	911
		240	08/28/00	75	1531	1622	1482	1795	1389	1441	1459
		260	09/17/00	90	1762	1836	1679	2044	1635	1647	1729
		265	09/22/00	99	1802	1888	1713	2067	1681	1686	1775

C) Bethel, OH	Predicted SimpAVG	KLUK					
Julian Date Date	<u>%emerg</u> <u>Mean DD10C</u>		<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
150 05/30/00	0 1 398		400	530	353	321	369
160 06/10/00	0 25 518	553	558	626	467	436	467
185 07/04/00	0 50 841	895	855	982	774	750	792
210 07/29/00	0 75 1211	1295	1285	1396	1115	1043	1132
245 09/02/00	0 90 1686	1820	1792	1876	1563	1508	1557
255 09/10/00	0 99 1781	1900	1871	1974	1660	1605	1673
D) Boston, MA	Predicted SimpAVG	KOWD					
Julian Date Date	<u>%emerg</u> <u>Mean DD10C</u>		<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
165 06/15/00			334	399	302	277	318
175 06/25/00			425	501	424	372	412
190 07/09/00			595	681	632	549	545
245 09/02/00			1273	1380	1280	1119	1203
265 10/22/00		1571	1634	1648	1484	1342	1463
295	99 not reached						
	Single Sine	KJFK					
	Mean DD10C		<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
	510		511	561	420	477	509
	766	870	755	835	664	720	754
	996	1119	986	1068	918	919	966
	1305	1445	1321	1365	1202	1196	1302
	1587	1722	1596	1656	1470	1461	1616
	1820	1953	1812	1885	1694	1694	1879
	Single Sine	KMDW					
	Mean DD10C	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
	377	416	296	507	317	362	361
	493	530	416	635	415	467	496
	1030	1087	963	1273	947	960	950
	1566	1653	1516	1830	1423	1473	1498
	1797		1714	2078	1669	1682	1768
	1837	1919	1748	2102	1716	1721	1814
	Single Sine						
	Mean DD10C		<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
	<u>Mean DD10C</u> 461		<u>2011</u> 452	<u>2012</u> 599	<u>2013</u> 413	<u>2014</u> 392	<u>2015</u> 430
	401 581		452 610	599 694	413 527	392 506	430 529
	905		907	1050	834	500 821	529 853
	905	902	907	1030	034	021	000

				1274	1362	1337	1464	1175	1114	1193
				1749	1887	1843	1944	1623	1579	1618
				1844	1967	1923	2043	1721	1676	1735
				Single Sine	KOWD					
				Mean DD10C	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
				388	381	380	475	376	340	376
				491	492	471	580	497	437	471
				668	684	641	760	705	615	605
				1325	1369	1319	1459	1355	1187	1263
				1627	1652	1699	1763	1617	1463	1568
rage of	US Locs	Predicted		SimpAVG		Single Sine				
<u>Date</u>	<u>Date</u>	<u>%emerg</u>		Mean DD10C		Mean DD10C				
159	06/07/00		1	386		434	\leftarrow -Using the si	ingle sine resul	ts vers. 1.1	
172	06/20/00		25	535		583				
194	07/13/00		50	852		900				
229	08/17/00		75	1319		1368				

1690

1833

441 (single sine method; simple avg method=408)

Reports used as limited validations:

E) Avera

8 Asian Longhorned Beetle. Ohio State University Extension Ohioline http://ohioline.osu.edu/factsheet/ent-75

09/08/00

09/25/00

-Adults emerge in late spring through late summer with peak emergence typically occurring in late June to early August; however, adults can be present in the fall.

90

99

1631

1789

-This report matches well with analysis C) above

253

268

9 USDA – Asian Longhorned Beetle – About

https://www.aphis.usda.gov/aphis/resources/pests-diseases/asian-longhorned-beetle/About-ALB

While adult beetle activity is most obvious during the summer and early fall, adults have been seen from April to December.

Adults can fly for 400 yards or more to search for a host tree or mate. However, they usually remain on the tree from which they emerged, resulting in infestation by future generations.

-Not enough detail but generally agrees with analysis above

10 Auclair, A.N.D., G. Fowler, M.K. Hennessey, A.T. Hogue, M. Keena, D.R. Lance, R. M. McDowell, D. O. Oryang, and A. J. Sawyer. 2005. Assessment of the risk of introduction of Anoplophora glabripennis (Coleoptera: Cerambycidae) in municipal solid waste from the quarantine area of New York City to landfills outside or the quarantine area: A pathway analysis of the risk of spread and establishment. J. Econ. Entomol. 98:47-60.

10a. First beetles emerg. In NY NY 2003:

06/26/03 DDS10C

10b. Fig. 5. it took 6-8 weeks at 20C before first beetles emerged for logs collected in April 1999

5		5	0		
Dds April 5 1	999:	34			
Dds April 25	1999:	80			
	Lab: 10DD/da	y			
6 wks at 20C	420	454 min DDC	10		
8wks at 20C	560	640 max DDC	210		
		547 avg DDC	:10		
Conclusion: Estimated first	adult emerg in 2	2003 was 6/26 at 441 DE	D and in 1999 was c	a. 6/13 at 454	DD (single sine method)
Table 7b part	A) NY NY was	therefore adjusted to ref	lect these estimates	5	

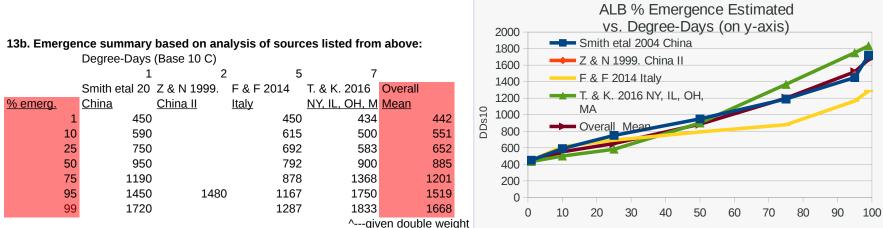
11 http://www.columbia.edu/itc/cerc/danoff-burg/invasion_bio/inv_spp_summ/Anoplophora%20glabripennis.html
 -Adult emergence in NY and IL appears to range from July to Nov.
 -This report from 2004 does not quite match analysis A) and B) above, which has first emerg. in June most Years

12 Summary table for life stage parameters

Notes: Tlower was forced to presumptive value of 10 C for sources 3 & 4; could have forced to Tlower of 10.55 or 11.0 C Tupper not well studied; these tend to be interpolated from ranges cited in sources 3 & 4

Source #	: 4	3	7	Average (or s	elected value)
Tlower Author At		<u>& M. 2010</u> <u>T</u>	<u>. & K. 2016</u>		notes
Egg	10.0		12		as noted already; 10 or 10.55 or 11 might all suffice as
Instars 1-8		10.0	11.0		a good overall Tlower; based on discussion of thermal
Instars 1-10		10.0	10.9		environment for this spp; the lower (10C) may be
Pupae		10.0	9.8		best value as phloem temperatures are always higher
Immature adult	10.0		-4		than ambient except during extreme hot periods
Overall Egg to Egg (min	generation time)			10	
<u>Tupper</u>					
Egg	34		34	34	Considering that most stages are protected from
Instars 1-8		34	30	34	extreme heat in logs/bark/trees; can use a relatively
Instars 1-10		34	30	34	high Tupper which would be the ambient (not within tree)
Pupae			30	34	actual temperature
Immature adult/PreOV			30	34	
Overall Egg to Egg (min	generation time)			34	
DD Req.					
Egg	235		248	240	
Instars 1-8		2301	1899	2160	
Instars 1-10		3374	2565	2600	
Pupae		254	263	260	
Schlerotizing/teneral ad	ult		124	124	
"Chewing" adult			132	132	← using this as greater value not both combined
Total Pre-Oviposition	244		256.2	256	
Overall Egg to Egg usin	g 8 instars (min gen. ti	me for univol	tine climates)	2916	
Overall Egg to Egg usin	g 10 instars (min gen. ⁻	time for bi tor	r tri-voltine climat	tes) 3356	
First emergence estimation	ed below			442	
Estimated post-winter la	rvae develop time			50	

13a. 1st emergence based on life stage analysis:

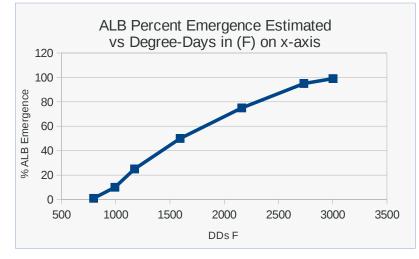

-assume in most all climates that mature larvae are ready to molt with temps above 10C in spring -therefore pupal duration (260 DD) + some pre-pupation time ca. 40 DDC + teneral adult "sclerotization" time (Table 2: 124 DDC) needed before flight & capture in traps Therefore: minimum time to emergence in spring/summer estimated as:

40 Nominal "post-diapause"/pre-pupal time

260 Pupal duration

124 Sclerotizing/teneral adult

424 Total ← Compare to 442 DD 1st Emerg below Conclusion: Rather similar; use average value below of 442 DD10C



given double weight

% Emergence

ALB Estimated Emergence (for graph)

DDsF50		
<u>all Mean</u>	<u>% emerg.</u>	
795	1	
992	10	
1173	25	
1593	50	
2162	75	
2735	95	
3003	99	
	<u>all Mean</u> 795 992 1173 1593 2162 2735	all Mean % emerg. 795 1 992 10 1173 25 1593 50 2162 75 2735 95

